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Investigating how information is transformed from brain region to brain region is a crucial step 
to understand the neural foundations of cognitive processes. This investigation requires a 
characterization of the representations encoded in different regions, and models of how they are 
transformed that can match the complexity of neural processes. We introduce an approach in 
which representations are characterized as points in multidimensional spaces, and processes 
transforming representations from region to region are modeled as nonlinear functions using 
artificial neural networks. Across multiple experiments with different stimuli and tasks, we show 
that this approach reveals functionally relevant network structure and outperforms comparable 
linear models at predicting independent data.

Cognition consists of processes operating on representations. A key challenge for cognitive 
neuroscience is therefore to characterize the transformation of representations that occurs during neural 
processing. Representations in cortex can be characterized in terms of distinct patterns of neural 
population activity (using direct electrophysiological recording1) or of blood oxygenation (e.g. using 
functional magnetic resonance imaging, fMRI2). For example, different object categories evoke distinct 
spatial patterns of activity across ventral temporal cortex3. Over the past decade, several new methods 
have been developed to characterize neural representations by exploiting the rich variability in 
multivariate neural responses: to extract information about stimuli or tasks2-6, and to directly model the 
encoding of this information within a cortical region7. The next open question is: How are 
representations transformed as they are processed, between brain regions? This article describes an 
approach to investigate this question. The approach is described and tested using fMRI data, but it is 
more generally applicable to other data acquisition techniques.

Existing methods for capturing inter-region interactions using fMRI data assume, implicitly or 
explicitly, that such interactions are linear. For example, widely used techniques, like functional 
connectivity8, psychophysiological interaction analyses9, granger causal modeling10 and dynamic causal 
modeling11, measure the relations between the average magnitude of response across regions (that is, the
univariate response). A few relatively new techniques measure the relations between multivariate 
responses across regions12-15, but are still limited to linear interactions. However, the transformation of 
representations between regions is likely multivariate and nonlinear. An example is the case of 
invariance in object recognition16 . Early visual processing can be modeled as representing images in 
"pixel-space": frontal views of two different faces are more similar in pixel brightness than a frontal and
a profile view of the same person. Processing along the ventral visual stream is then modeled as series 
of non-linear transformations17, for example to create a "face-space" in which highly heterogeneous 
images of the same face are all seen as similar (i.e. occupy a tight convex region, supporting linear 
classification), allowing observers to recognize a specific individual, even across modalities (i.e. face 
and voice).  An even more complex transformation occurs in the brain of a reader, to transform the 
brightness of pixels into representations of letters, words, sentences, and then a scientific argument. 

In this article, we introduce a modeling framework that can capture multivariate and non-linear 
interactions between brain regions. In the first step, a data-driven multidimensional model of the 
representational space in each brain region is generated. In the second step, the dynamic mappings 
between representational spaces are modeled as multivariate and nonlinear transformations, and the 
predictive power of these nonlinear mappings is tested in independent data. We apply this framework to 
the analysis of two fMRI datasets: an experiment on the recognition of person identity from faces and 
voices, and an experiment on language understanding. Across both experiments, we find that the 
nonlinear models 1) explain more variance in independent data than linear processes, 2) reveal 
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structural properties of networks driven by hemispheric laterality, stimulus type, and interhemispheric 
homology, and 3) can be modulated by the task performed by the participants.

Results

Nonlinear processes explain more independent variance than linear processes during the recognition
of faces and voices

Nonlinear processes during the recognition of faces and voices were investigated with a paradigm 
in which participants were asked to detect a target famous person identity from images of faces and 
recordings of voices. 

Brain regions showing selective responses to faces and to voices were functionally defined in 
individual participants using two independent functional localizers employing a one-back task. Face 
selective regions were defined as regions showing stronger responses to images of faces than to images 
of buildings, and voice selective regions as regions showing stronger responses to recordings of voices 
than recordings of tool sounds. The contrast for face-selective regions (Supplementary Figure 1A) 
identified the fusiform face area (FFA) bilaterally, the superior temporal sulcus (STS) bilaterally, the 
ventral anterior temporal lobes (vATL) bilaterally, and posterior cingulate (PCvis). The contrast for 
voice-selective regions (Supplementary Figure 1B) identified the posterior, middle and anterior superior
temporal gyri (STG) bilaterally, posterior cingulate (PCaud), and ventromedial prefrontal cortex 
(vmPFC). Some overlap between face-selective and voice-selective regions was found in the posterior 
cingulate and in superior temporal cortex.

The nonlinear interactions between these functionally-defined regions were examined, using data 
from five experimental runs of mixed faces and voices.  Across all voxels in each region, principal 
component analysis (PCA) was applied to find the dimensions that best capture the variance in the 
region's responses over time. Each dimension corresponds to a spatial pattern of activity across voxels 
within a region. These spatial patterns can be interpreted as axes of the region's representational space. 
For the current analyses, we selected the top five dimensions in each region (based on prior 
experiments)18.

Nonlinear interactions between each pair of brain regions were modeled with artificial neural 
networks having as inputs the responses in the dimensions of one region and as outputs the responses in 
the dimensions of the other region (and viceversa). The networks were trained using the entire 
timecourses in all but one run, and the variance explained in the excluded run was calculated, 
generating an independent measure of “nonlinear correlation” |r| (see Methods). This procedure was 
repeated for each choice of the excluded run, and the results from the different iterations were averaged.

The first question we set out to answer is whether the use of nonlinear models of the interactions 
between brain regions in fMRI data is justified. To address this question, we compared the performance 
of nonlinear models to the performance of linear models. For the linear models, the data were analyzed 
in the same way (with identical denoising and dimensionality reduction), but multivariate regression 
between the regions was calculated.

Nonlinear models explained more variance in independent data than linear models across all 
choices of the degrees of nonlinearity tested (t(10) = 2.61, p < 0.05 when using one hidden node, 
t(10)>5 and p<0.0005 when using more than one hidden node; Figure 1A-C). Because independent data
are used for the training and testing of the models, this difference cannot be due to the greater 
complexity of nonlinear models. Indeed, the |r| values for nonlinear models do not continue to increase 
with the number of hidden nodes, but rather asymptote reaching a peak at 5 hidden nodes.  Thus, the use
of nonlinear models over linear models is justified: nonlinear models explain more variance than linear 
models in independent data. Furthermore, the number of hidden nodes at which the |r| value asymptotes 
is an estimate of the complexity of the nonlinear process that can be measured within the limits of the 
available fMRI data.
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A more accurate characterization of a network should lead to improved discrimination between 
strong and weak inter-region interactions. Therefore, we hypothesized that moving from simpler to 
more complex models, an overall increase in the |r| values would be accompanied by an increase in the 
variability of |r| values across different region pairs, with greater differences between pairs of regions 
with strong interactions and pairs of regions with weak interactions. To test this hypothesis, we 
calculated the variance of the set of |r| values in the connectivity matrices generated with different 
models. The variance of |r| values across region pairs was indeed found to be greater for nonlinear than 
linear models, and to asymptote for the same number of nodes as the |r| values themselves (Figure 1D). 
In other words, the models that explained most variance in independent data also provided maximal 
discrimination between strong and weak interactions between regions.

As an additional control, we attempted to predict the multivariate timecourses in each region 
using the experimental conditions convolved with the standard haemodynamic response function (hrf) 
from SPM. Both linear and nonlinear models based on multivariate timecourses in other regions 
generated better predictions than the model based on the experimental conditions alone (Figure 1C, red 
line).

The network of face- and voice- selective regions is organized by modality and hemispheric laterality
In the experimental task, participants viewed faces and voices, and extracted a common invariant, 

the person's identity. Nevertheless, we hypothesized that pairs of brain regions involved in processing 
the same modality (faces, or voices) should have stronger interactions during this task.  As 
hypothesized, stronger interactions were found between pairs of regions selective for the same modality 
(Figure 2A). (Note that this result is true even though the mean response of each region over time, the 
univariate timecourse, was removed from the data prior to analysis; these interactions reflect only 
relations between the spatial patterns of activity in different regions). 

In the end, multi-dimensional scaling (MDS) was used to visualize the structure of the functional 
network (using closeness to represent the strength of each measured interaction, see Figure 2B, 
Supplementary Video 1). In the MDS visualization, regions were found to cluster by modality 
(preferring faces or voices in the independent localizer) and by hemispheric laterality (left versus right 
hemisphere, Figure 2B, Supplementary Video 1). This clustering was quantified with statistical tests on 
the strength of interactions. Interactions between pairs of regions both within the face-selective group or
both within the voice-selective group are significantly stronger than between pairs of regions in which 
one is face-selective and the other voice-selective (t(10) = 4.0900, p<0.005). Interactions between pairs 
of regions within the same hemisphere are significantly stronger than interactions between pairs of 
regions in which one is in the right hemisphere and the other in the left hemisphere (t(10) = 5.0781, 
p<0.005).

Nonlinear processes explain more independent variance than linear processes during language 
understanding

To probe the versatility and potential of this framework for modeling nonlinear processes, in a 
second experiment we explored its application to the study of language understanding. Participants 
(N=16) watched a set of short stories (presented visually word-by-word), with each story contained in a 
separate functional run. In two of the stories participants watched passively, while in two different 
stories they engaged in an unrelated demanding task (a two-back task on the orientation of a line).

Language-selective regions were defined in individual participants with an independent language 
localizer19 as regions showing stronger responses during the reading of sentences than the reading of 
sequences of nonwords. This contrast identified six regions in the left hemisphere (Supplementary 
Figure 2): three in the frontal lobe (LIFGorb, LIFG, and LMFG), three in the temporal and parietal 
cortices (LAntTemp, LPostTemp, and LAngG), as well as six right-hemisphere homologues.
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The analysis approach used in Experiment 1 was repeated twice in Experiment 2, once for the 
passive reading task, and once for reading under a cognitive load. A comparison between the 
performance of nonlinear models of the interactions between regions to the performance of linear 
models (using identical preprocessing and dimensionality reduction) revealed that nonlinear models 
explain more variance than linear models in independent data for both tasks (passive listening: t(15) > 
23, p < 0.0005 for all numbers of hidden nodes, Figure 3A-C; cognitive load: t(15) > 11, p<0.0005 for 
all numbers of hidden nodes, Figure 3 E-G). Also, the variance of |r| values across region pairs was 
higher for nonlinear than linear models, and peaked at a similar number of nodes as the |r| values 
themselves for both experimental tasks (Figure 3D for passive listening, Figure 3H for the cognitive 
load task). Thus, nonlinear models again explained more variance in independent data, and were more 
sensitive to the difference between strong and weak interactions, than linear models. 

Network structure in language understanding is stable across different tasks
In an MDS visualization, homologous regions in the two hemispheres showed strong inter-

hemispheric interactions (Figure 4, Supplementary Videos 2, 3). This structure is intriguing because the 
homologous regions are physically distant; nevertheless, the trajectory in representational space was 
strongly related between these pairs of regions. A similar network structure was found in the two tasks 
(passive listening: Figure 4A, cognitive load: Figure 4B).

Subtle differences in nonlinear processes between tasks make it possible to reliably classify the task 
based on network structure

The transformation of representations, and therefore the pattern of interactions between brain 
regions, should be different when participants are doing different tasks on the same input. In the current 
study, participants performed two tasks on similar verbal material: passive reading, or reading under 
cognitive load. To test whether this difference in mental activity was reflected in patterns of 
interregional interactions, linear discriminant analysis (LDA) was applied to the nonlinear interactions 
between regions in the two tasks. An LDA classifier was trained with data from all but one participant, 
and the accuracy at classifying the tasks in the left-out participant was assessed. This procedure yielded 
a mean classification accuracy of 63% (p < 0.05, permutation test, 1000 iterations). By contrast, the 
pattern of linear interactions between brain regions in the same data could not be used to classify the 
participants' task ( accuracy = 53%, p = 0.25). Classification based on nonlinear interactions was 
significantly higher than classification based on linear interactions (one-tailed t(15) = 1.86, p < 0.05).

Discussion

This article introduces a method to investigate the transformation of representations between brain
regions, using data from noninvasive neuroimaging in human participants. Each brain region's response 
over time is represented as a multivariate timecourse: the trajectory in the dimensions of its own 
representation space. Then, the relation between these trajectories across regions is estimated, using 
nonlinear function approximators (artificial neural networks). This is a new analysis technique, but also 
a new way to conceive the study of interactions between brain regions, shifting from measuring 
correlated fluctuations in the overall response of regions, to studying complex transformations of 
representations: the neural foundations of cognitive processes.

This approach stands at the confluence between existing techniques for multivariate pattern 
analysis (MVPA) and for measuring functional connectivity. As compared to other work that integrates 
MVPA and connectivity11-14, the method described in this article leverages the potential of multivariate 
maps between representational spaces introduced by Multivariate Pattern Connectivity (MVPC)13, 
combining it with nonlinear functions in order to predict the multivariate responses in one regions as a 
function of complex interactions between multiple dimensions represented in another region. For 
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example, one region might encode information about face parts (e.g. each dimension reflects the relative
size or distance of one feature); another region might encode information about facial emotional 
expression; the proposed method has the potential to measure the nonlinear transformation of 
dimensions in feature-space required to predict responses in the space of facial emotional expressions. 

The results show that this approach is not only theoretically principled, but also practically viable.
Nonlinear interactions between brain regions explain more variance in independent data than linear 
interactions, demonstrating that even the limited data obtained with a standard fMRI protocol justify the
use of nonlinear models. In other words, the data are sufficiently rich that nonlinearity can be 
introduced without leading to overfitting or compromising generalization to independent data. 
Furthermore, nonlinear models reveal meaningful and reliable structure in the networks of brain 
regions: stronger interactions between regions based on their preferred stimulus modality (faces or 
voices), and based on their position in the cortical hierarchy (homologous regions across hemispheres).

Several lines of research can be pursued in the future to increase the potential of this modeling 
approach. A critical step will be to relate the principal components of responses in each individual 
region to properties of the stimuli (i.e. an encoding model of each region's representational space20). 
Next, data driven models of nonlinear interactions between brain regions could be used to constrain 
algorithmic models of neural computation, for instance models based on deep neural networks. In the 
end, graph analysis methods21 could be used to study the structure of networks composed of nonlinear 
interactions. Modeling neural processes complements the investigation of neural representations, 
providing the instruments to study how these representations are transformed from region to region to 
give rise to cognition.

Methods

Experimental design
In the first experiment 11 participants completed a face localizer and a voice localizer. In the face 

localizer, participants watched 16s blocks of images of faces and houses while performing a 1-back 
task. In the voice localizer, participants performed a 1-back task on 16s blocks of voice and tool sounds.
After the localizers, participants were administered five experimental runs in which they were asked to 
detect a target person identity, defined before the beginning of the experiment. Images of faces and 
recordings of voices were presented in 4s long trials arranged in a pseudorandomized order generated 
with Optseq 2 (http://surfer.nmr.mgh.harvard.edu/optseq/). Participants were asked to detect a famous 
target identity. Each run consisted of 120 trials and lasted approximately 8 minutes.

In the second experiment, 16 participants completed a language localizer in which they passively 
read 18 seconds long blocks of sentences or nonwords. Each block consisted of 3 sequences of 
nonwords or of words forming a sentence. At the end of each sequence a cue was presented and 
participants had to press a button. After the localizer, participants read stories presented visually word-
by-word. Each run contained a full story, lasting approximately 6 minutes. In two of the runs, 
participants watched the stories passively; in two other runs they performed a two-back task on the 
orientation of a line.

Data acquisition
Data for the first experiment were collected on a Bruker BioSpin MedSpec 4T at the Center for 

Mind/Brain Sciences (CIMeC) of the University of Trento using a USA Instruments eight-channel 
phased-array head coil. Before collecting functional data, a high-resolution (1×1×1 mm3) T1-weighted 
MPRAGE sequence was performed (sagittal slice orientation, centric phase encoding, image matrix = 
256 × 224 [Read × Phase], field of view =256 × 224 mm [Read × Phase], 176 partitions with 1-mm 
thickness, GRAPPA acquisition with acceleration factor = 2, duration = 5.36 minutes, repetition time = 
2700, echo time = 4.18, TI = 1020 msec, 7° flip angle).
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Functional data were collected using an echo-planar 2D imaging sequence with phase 
oversampling (image matrix = 70 × 64, repetition time = 2000 msec, echo time = 21 msec, flip angle = 
76°, slice thickness = 2 mm, gap = 0.30 mm, with 3 × 3 mm in plane resolution). Over four runs, 1260 
volumes of 43 slices were acquired in the axial plane aligned along the long axis of the temporal lobe. 

Data for the second experiment were collected on a Siemens Trio 3T scanner with a 32-channel 
head coil at the Athinoula A. Martinos Imaging Center at McGovern Institute for Brain Research at 
MIT. Before collecting functional data, a high-resolution (1×1×1 mm3) T1-weighted MPRAGE 
sequence was performed (sagittal slice orientation, centric phase encoding, image matrix = 256 × 224 
[Read × Phase], field of view =256 × 224 mm [Read × Phase], 128 axial slices, GRAPPA acquisition 
with acceleration factor = 2, duration = 5.36 minutes, repetition time = 2530, echo time = 3.48, TI = 
1020 msec, 7° flip angle).

Functional data were collected using an echo-planar 2D imaging sequence (image matrix = 96 × 
96, repetition time = 2000 msec, echo time = 30 msec, flip angle = 90°, 31 slices, slice thickness = 4 
mm, 10% distance factor, with 2.1 × 2.1 mm in plane resolution). Prospective acquisition correction22 
was used to adjust the positions of the gradients based on the participant’s motion one TR back. The 
first 10 s of each run were excluded to allow for steady-state magnetization.

Data analysis
Data were preprocessed with SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) running 

on MATLAB 2015b. After slice-timing correction and realignment, the functional volumes were 
coregistered to the anatomical volume and normalized. No smoothing was applied.

Functional regions of interest (ROIs) were defined in individual subjects with t-contrasts in the 
functional localizers for faces>houses and voices>tool sounds in the first experiment, for 
sentences>nonwords in the second experiment. In the first experiment, ROIs were defined as 9mm 
radius spheres centered in the t-contrast peaks in the anatomical areas where activations were expected 
based on prior studies. In the second experiment, ROIs were defined by taking the 100 voxels showing 
highest t-contrasts within each of six search spaces generated based on a probabilistic activation overlap
map for the localizer contrast in 220 participants23; these were similar to the original search spaces 
reported in Fedorenko et al.19, but the two anterior temporal and two posterior temporal search spaces 
ended up being morphed together.

Patterns of response in each ROI were extracted and denoised with CompCor24, regressing out the
first five principal components extracted from a control ROI in the ventricles. The data were then 
demeaned, and the runs entering in each analysis were concatenated. In the first experiment, all runs 
were analyzed together, in the second experiment, the runs with passive listening and the runs with the 
active task were analyzed separately. Dimensionality reduction was performed with PCA, the first five 
principal components were preserved on the basis of previous results17. The data from different runs 
were subsequently split for the training/testing of the interaction models. This procedure was identical 
for the linear and for the nonlinear interaction models.

For the linear models, the interactions between each pair of brain regions were modelled with a 
multiple regression taking as inputs the values along the dimensions in one brain region in the pair and 
taking as outputs the values along the dimensions in the other region.

For the nonlinear models, interactions were modelled with one-hidden-layer artificial neural 
networks with the same inputs and outputs. The networks used hyperbolic tangent transfer functions and
were trained with backpropagation using the Levenberg-Marquardt algorithm25. Variance explained was 
calculated with a leave-one-run-out cross-validation procedure in which the networks were trained with 
data from all runs except from one, and prediction accuracy was tested on the left-out run that was not 
used for training. In order to facilitate comparison with functional connectivity measures, which use r 
values rather than R2, the squared root of variance explained was computed obtaining a “generalized 
correlation” index |r|. Thanks to the independence of the training/testing procedure, the estimates of |r| 
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are not biased by the complexity of the models, and in fact they asymptote for a small number of hidden
nodes (Figure 1A, 2A, 3A-B ). Nonmetric multidimensional scaling was performed with the MATLAB 
function “mdscale” using default parameters.
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Figures

Figure 1

r

Fig. 1. A) Linear multivariate connectivity matrix generated with multiple regression. Each cell of the 
matrix depicts the |r| index (square root of independent variance explained) for a pair of regions. B) 
Nonlinear multivariate connectivity matrix generated using the same data with one-hidden-layer 
artificial neural networks, using a network with 5 hidden nodes. Each cell depicts the |r| index for a pair
of regions. C) Bars depict the average |r| across all connections for nonlinear  multivariate connectivity 
as a function of the number of nodes in the hidden layer. The |r| index increases and asymptotes at 
about 5 hidden nodes. The black horizontal line denotes the average |r| for linear multivariate 
connectivity, and the red line the |r| obtained using a linear model based on the set of experimental 
conditions. D) Bars depict the variance between |r| values within the connectivity matrix as a function 
of the number of hidden nodes. As the number of hidden nodes increases, the differences between low |
r| and high |r| interactions increase, reaching an asymptote at 5 hidden nodes, the same number of nodes
at which the average |r| asymptotes.
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Figure 2

Fig. 2. A) |r| index as a function of number of hidden nodes for pairs of regions selective for the same 
modality (green) and for pairs of regions one selective for faces and the other for voices (orange). B) 
3D multidimensional scaling based on the nonlinear multivariate connectivity matrix shows clustering 
of face-selective regions (red), voice-selective regions (blue) and regions with overlap between face- 
and voice- selectivity (purple). C) the same multidimensional scaling, seen from a different vantage 
point, shows separation between right hemisphere regions (circles, on the right) and left hemisphere 
regions (diamonds, on the left).
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Figure 3

Fig. 3. A-D: passive listening task. A) Linear multivariate connectivity matrix. Each cell of the matrix 
depicts the |r| index for a pair of brain regions. B) Nonlinear multivariate connectivity matrix for 3 
hidden nodes. C) Average |r| index as a function of the number of hidden nodes. D) Variance of the |r|
index across region pairs as a function of the number of hidden nodes. E-H: two-back task. A) Linear 
multivariate connectivity matrix. B) Nonlinear multivariate connectivity matrix for 3 hidden nodes. C) 
Average |r| index as a function of the number of hidden nodes. D) Variance of the |r| index across region
pairs as a function of the number of hidden nodes.
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Figure 4

Fig. 4. A) 3D multidimensional scaling based on the connectivity matrix of the passive listening task. 
B) 3D multidimensional scaling based on the connectivity matrix of the two-back task. The brain 
regions are arranged similarly in space across the two tasks.
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Supplementary Figure 1

Supp. Fig. 1. A) Face-selective ROIs. FFA (red), ATL (green), STS (blue), PC (magenta). B) Voice-
selective ROIs. pSTG (blue), mSTG (green), aSTG (magenta), vmPFC (red), PC (yellow).
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Supplementary Figure 2

Supp. Fig. 2. Search spaces for the language ROIs. AngG (blue), PostTemp (cyan), AntTemp (yellow), 
MFG (red), IFG (magenta), IFGOrb (green).
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