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Abstract

We present a Bayesian framework for explaining how peopdsae
about and predict the actions of an intentional agent, baseabserv-
ing its behavior. Action-understanding is cast as a prolémverting

a probabilistic generative model, which assumes that agend to act
rationally in order to achieve their goals given the coristszof their en-
vironment. Working in a simple sprite-world domain, we shioow this

model can be used to infer the goal of an agent and predictim@agent
will act in novel situations or when environmental consttaichange.
The model provides a qualitative account of several kindsfefences
that preverbal infants have been shown to perform, and afsqufantita-
tive predictions that adult observers make in a new exparime

1 Introduction

A woman is walking down the street. Suddenly, she turns 18@ads and begins running
in the opposite direction. Why? Did she suddenly realizevghs going the wrong way,
or change her mind about where she should be headed? Did sleenker something
important left behind? Did she see someone she is tryingdm avlhese explanations for
the woman'’s behavior derive from taking theentional stance: treating her as a rational
agent whose behavior is governed by beliefs, desires or atketal states that refer to
objects, events, or states of the world [5].

Both adults and infants have been shown to make robust andiirdgntional inferences
about agents’ behavior, even from highly impoverishedliinin “sprite-world” displays,
simple shapes (e.g., circles) move in ways that convey agtense of agency to adults,
and that lead to the formation of expectations consistetfit gdal-directed reasoning in in-
fants[9, 8, 14]. The importance of the intentional standati@rpreting everyday situations,
together with its robust engagement even in preverbal iafand with highly simplified
perceptual stimuli, suggest that it is a core capacity of &mgognition.

In this paper we describe a computational framework for ingéntentional reasoning in
adults and infants. Interpreting an agent’s behavior drnkentional stance poses a highly
underconstrained inference problem: there are typicatlgytonfigurations of beliefs and
desires consistent with any sequence of behavior. We defprelzabilistic generative
model of an agent’s behavior, in which behavior is dependarttidden variables repre-
senting beliefs and desires. We then model intentionabreéag as a Bayesian inference
about these hidden variables given observed behavior segsie



It is often said that “vision is inverse graphics” — the irsien of a causal physical process
of scene formation. By analogy, our analysis of intentiomsoning might be called
“inverse planning”, where the observer infers an agentaritions, given observations of
the agent’s behavior, by inverting a model of how intenticasse behavior. The intentional
stance assumes that an agent’s actions depend causallyndal states via therinciple

of rationality: rational agents tend to act to achieve their desires amaflji as possible,
given their beliefs. To achieve their desired goals, agamist typically not only select
single actions but must constrygtans, or sequences of intended actions. The standards
of “optimal plan” may vary with agent or circumstance: pbdgies include achieving
goals “as quickly as possible”, “as cheaply ...", “as reljab.”, and so on. We assume a
soft, probabilistic version of the rationality principlaljowing that agents can often only
approximate the optimal sequence of actions, and occdli@tain unexpected ways.

The paper is organized as follows. We first review severartecal accounts of inten-
tional reasoning from the cognitive science and artificraklligence literatures, along
with some motivating empirical findings. We then present@amputational framework,
grounding the discussion in a specific sprite-world domaiastly, we present results of
our model on two sprite-world examples inspired by previexygeriments in developmen-
tal psychology, and results of the model on our own expertmen

2 Empirical studiesof intentional reasoning in infants and adults

2.1 Inferringan invariant goal

The ability to predict how an agent’s behavior will adapt whenvironmental circum-
stances change, such as when an obstacle is inserted ore@nig\a critical aspect of
intentional reasoning. Gergely, Csibra and colleagued][8howed that preverbal infants
can infer an agent's goal that appears to be invariant acliffesent circumstances, and
can predict the agent’s future behavior by effectively asisg that it will act to achieve its
goal in an efficient way, subject to the constraints of itsiemment. Their experiments
used a looking-time (violation-of-expectation) paradigisith sprite-world stimuli. Infant
participants were assigned to one of two groups. In the &t condition, infants were
habituated to a sprite (a colored circle) moving (“jumpinigi a curved path over an ob-
stacle to reach another object. The size of the obstacled/agross trials, but the sprite
always followed a near-shortest path over the obstaclestthréhe other object. In the “no
obstacle” group, infants were habituated to the sprit@falhg the same curved “jumping”
trajectory to the other object, but without an obstacle kilog its path. Both groups were
then presented with the same test conditions, in which tistacke was placed out of the
sprite’s way, and the sprite followed either the old, curpath or a new direct path to the
other object. Infants from the “obstacle” group looked lengt the sprite following the
unobstructed curved path, which (in the test condition) m@g far from the most efficient
route to the other object. Infants in the “no obstacle” grimgked equally at both test stim-
uli. Thatis, infants in the “obstacle” condition appearedhterpret the sprite as moving in
a rational goal-directed fashion, with the other objecttagoal. They expected the sprite
to plan a path to the goal that was maximally efficient, sutieenvironmental constraints
when present. Infants in the “no obstacle” group appearee mocertain about whether
the sprite’s movement was actually goal-directed or abduatits goal was: was it simply
to reach the other object, or something more complex, suckahing the object via a
particular curved path?

2.2 Inferring goals of varying complexity: rational means-endsanalysis

Gergely et al. [6], expanding on work by Meltzoff [11], shaiwhat infants can infer goals
of varying complexity, again by interpreting agents’ belbav as rational responses to en-
vironmental constraints. In two conditions, infants savadolt demonstrate an unfamiliar
complex action: illuminating a light-box by pressing itptwith her forehead. In the
“hands occupied” condition, the demonstrator pretendésttoold and wrapped a blanket



around herself, so that she was incapable of using a moreatypieans (i.e., her hands)
to achieve the same goal. In the “hands free” condition theaiestrator had no such con-
straint. Most infants in the “hands free” condition sporgausly performed the head-press
action when shown the light-box one week later, but only aifdants in the “hands occu-
pied” condition did so; the others illuminated the lightdmmply by pressing it with their
hands. Thus infants appear to assume that rational agehtakei the most efficient path
to their goal, and that if an agent appears to systematieatlyloy an inefficient means, it
is likely because the agent has adopted a more complex gaahtiiudes not only the end
state but also the means by which that end should be achieved.

2.3 Inductiveinferencein intentional reasoning

Gergely and colleagues interpret their findings as if irdare reasoning about intentional
action in an almost logical fashion, deducing the goal ofgen&from its observed behav-
ior, the rationality principle, and other implicit premgseHowever, from a computational
point of view, it is surely oversimplified to think that thetémtional stance could be imple-
mented in a deductive system. There are too many sourceseftaimty and the inference
problem is far too underconstrained for a logical approache successful. In contrast,
our model posits that intentional reasoning is probalilisPeople’s inferences about an
agent’s goal should be graded, reflecting a tradeoff betwreprior probability of a can-
didate goal and its likelihood in light of the agent's obsahbehavior. Inferences should
become more confident as more of the agent’s behavior is\wdxter

To test whether human intentional reasoning is consistétft a probabilistic account,
it is necessary to collect data in greater quantities antl giieater precision than infant
studies allow. Hence we designed our own sprite-world erpartal paradigm, to collect
richer quantitative judgments from adult observers. Maxgegiments are possible in this
paradigm, but here we describe just one study of statisifatts on goal inference.
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Figure 1: (a) Training stimuli in complex and simple goal ditions. (b) Test stimuli 1 and 2. Test
stimuli was the same for each group. (c) Mean of subjectsigatwith standard error bars (n=16).

Sixteen observers were told that they would be watchingiasef animations of a mouse
running in a simple maze (a box with a single internal wallheTdisplays were shown
from an overhead perspective, with an animated schematie of the mouse’s path as it
ran through the box. In each display, the mouse was placediffieaent starting location
and ran to recover a piece of cheese at a fixed, previouslydddocation. Observers were
told that the mouse had learned to follow a more-or-lesgtipath to the cheese, regardless
of its starting location. Subjects saw two conditions inmteubalanced order. In one con-
dition (“simple goal”), observers saw four displays cotesig with this prior knowledge.
In another condition (“complex goal”), observers saw mogata suggestive of a more
complex, path-dependent goal for the mouse: it first rarctliréo a particular location in
the middle of the box (the “via-point”), and only then ran ketcheese. Fig. 1(a) shows
the mouse’s four trajectories in each of these conditiorate khat the first trajectory was
the same in both conditions, while the next three were differ Also, all four trajecto-
ries in both conditions passed through the same hypothegi&c@oint in the middle of the
box, which was not marked in any conspicuous way. Hence Ihatisimple goal (“get to



the cheese”) and complex goal (“get to the cheese via pYitwere logically possible
interpretations in both conditions.

Observers’ interpretations were assessed after viewin efthe four trajectories, by
showing them diagrams of two test paths (Fig. 1(b)) runniogifa novel starting location
to the cheese. They were asked to rate the probability of thesmtaking one or the other
test path using a 1-7 scale: 1 = definitely path 1, 7 = definpalh 2, with intermediate
values expressing intermediate degrees of confidence réasén the simple-goal condi-
tion always leaned towards path 1, the direct route that wasistent with the given prior
knowledge. Observers in the complex-goal condition ilijtiganed just as much towards
path 1, but after seeing additional trajectories they becatreasingly confident that the
mouse would follow path 2 (Fig. 1(c)). Importantly, the é&tgroup increased its average
confidence in path 2 with each subsequent trajectory vieegtsistent with the notion that
goal inference results from something like a Bayesian natdgn process: prior probability
favors the simple goal, but successive observations are likety under the complex goal.

3 Previous models of intentional reasoning

The above phenomena highlight two capacities than any nafdetentional reasoning
should capture. First, representations of agents’ metatdsshould include at least prim-
itive planning capacities, with a constrained space of whatd goals and subgoals (or
intended paths) that can refer to objects or locations igespand the tendency to choose
action sequences that achieve goals as efficiently as pmssfiecond, inferences about
agents’ goals should be probabilistic, and be sensitivetb prior knowledge about likely
goals as well as statistical evidence for more complex arliksly goals that better account
for observed actions.

These two components are clearly not sufficient for a corapgetount of human inten-
tional reasoning, but most previous accounts do not inohweéa these capacities. Gergely,
Csibra and colleagues [7] have proposed an informal (nopatational) model in which
agents are essentially treated as rational planners, fareirces about agents’ goals are
purely deductive, without a role for probabilistic expeittas or gradations of confidence.

A more statistically sophisticated computational framewfor inferring goals from behav-
ior has been proposed by [13], but this approach does notpocate planning capacities.
In this framework, the observer learns to represent an ageolicies, conditional on the
agent’s goals. Within a static environment, this knowledij@vs an observer to infer the
goal of an agent's actions, predict subsequent actionsparfdrm imitation, but it does
not support generalization to new environments where teatsgpolicy must adapt in re-
sponse. Further, because generalization is not basedanmggtrior knowledge such as
the principle of rationality, many observations are neddedood performance. Likewise,
probabilistic approaches to plan recognition in Al (e.8,,10]) typically represent plans
in terms of policies (state-action pairs) that do not gelimravhen the structure of the
environment changes in some unexpected way, and that esuich data to learn from
observations of behavior.

Perhaps closest to how people reason with the intentioaatstare methods fonverse
reinforcement learning (IRL) [12], or methods for learning an agent’s utility furan [2].
Both approaches assume a rational agent who maximizesterpgtiity, and attempt to
infer the agent’s utility function from observations of hehavior. However, the utility
functions that people attribute to intentional agents gpcally much more structured
and constrained than in conventional IRL. Goals are typicifined as relations towards
objects or other agents, and may include subgoals, prefpaths, or other elements. In the
next section we describe a Bayesian framework for modetitentional reasoning that is
similar in spirit to IRL, but more focused on the kinds of getrlictures that are cognitively
natural to human adults and infants.



4 The Bayesian framework

We propose to model intentional reasoning by combiningriferéntial power of statistical
approaches to action understanding [12, 2, 13] with simetsigns of the representational
structures that psychologists and philosophers [5, 7] laagaed are essential in theory
of mind. This section first presents our general approactl,then presents a specific
mathematical model for the “mouse” sprite-world introddedove.

Most generally, we assume a world that can be representednis tof entities, attributes,
and relations. Some attributes and relationsdyr@amic, indexed by a time dimension.
Some entities aragents, who can perform actions at any timwith the potential to change
the world state at timé+1. We distinguish between environmental state, denitecénd
agent states, denotéd For simplicity, we will assume that there is exactly oneiritonal
agentin the world, and that the agent’s actions can onlgtiffeown states € S. Letsg.r
be a sequence @f+1 agent states. Typically, observations of multiple statpisaces of
the agent are available, and in general each may occur ineaateenvironment. Let): ¥
be a set ofV state sequences, and et be a set ofV corresponding environments. Let
A, be the set of actions available to the agent from stagad letC'(a) be the cost to the
agent of actiom € A,. Let P(s:1]as, s¢, w) be the distribution over the agent’s next state
st+1, given the current statg, an actiora; € A,, and the environmental state

The agent'’s actions are assumed to depend on mental stateashaliefs anddesires. In

our context, beliefs correspond to knowledge about therenwiental state. Desires may
be simple or complex. A simple desire is @md goal: a world state or class of states that
the agent will act to bring about. There are many possiedifor more complex goals,
such as achieving a certain end by means of a certain routevatg a certain sequence
of states in some order, and so on. We specify a particuldrspaeeG of simple and
complex goals for sprite-worlds in the next subsection. agent draws goalg € G from

a prior distributionP(g|w!"), which constrains goals to be feasible in the environments
wN from which observations of the agent’s behavior are avhlab

Given the agent’s gogland an environment, we can define a valug, ., (s) for each state
s. The value function can be defined in various ways dependinfy®@ domain, task, and
agent type. We specify a particular value function in thetsetbsection that reflects the
goal structure of our sprite-world agent. The agent is asslitm choose actions according
to a probabilistic policy, with a preference for actionstwifreater expected increases in
value. LetQg . (s,a) = > P(s'|a,s,w)Vy.(s") — C(a) be the expected value of the
state resulting from actiom, minus the cost of the action. The agent’s policy is

P(atlst, g, w) oc exp(BQg,uw(st,ar)). (1)
The parametef controls how likely the agent is to select the most valuabt®a. This
policy embodies a “soft” principle of rationality, whichlalvs for inevitable sources of
suboptimal planning, or unexplained deviations from thedipath. A graphical model
illustrating the relationship between the environmertttks and the agent'’s goals, actions,
and states is shown in Fig. 2.

The observer’s task is to infgrfrom the agent’s behavior. We assume that state sequences
are independent given the environment and the goal. Theaysefersg from ;% via
Bayes’ rule, conditional o V:

P(glsgia’,w' ™) oc Plglw ™) [T, P(shrlg, w'). 2
We assume that state transition probabilities and actiobabilities are conditionally in-
dependent given the agent’s gaeglthe agent’s current statg, and the environment.
The likelihood of a state sequenggr given a goaly and an environment is computed

by marginalizing over possible actions generating statesitions:

P(sor|g,w) = tT;ol ZateASt P(sit1ar, s, w)P(atlst, g, w). 3)



Figure 2: Two time-slice dynamic Bayes net representation
of our model, wherd¥V is the environmental stat&; is

the agent's goalS; is the agent’s state at time and A;

is the agent’s action at time Beliefs, desires, and actions
intuitively map ontol, G and A, respectively.

4.1 Modeling sprite-world inferences

Several additional assumptions are necessary to apphpthedramework to any specific
domain, such as the sprite-worlds discusse§2n The size of the grid, the location of
obstacles, and likely goal points (such as the location efdeese in our experimental
stimuli) are represented B¥, and assumed to be known to both the agent and the observer.
The agent’s state spaceconsists of valid locations in the grid. All state sequenmes
assumed to be of the same length. The action spacsonsists of moves in all compass
directions{N, S, E,W,NE, NW,SE, SW}, except where blocked by an obstacle, and
action costs are Euclidean. The agent can also choose tarstiflavith cost 1. We assume
P(s¢41]at, st, w) takes the agent to the desired adjacent grid point detestiziaily.

The set of possible goafs includes both simple and complex goals. Simple goals wél ju
be specific end states . While many kinds of complex goals are possible, we assume
here that a complex goal is just the combination of a desinedseate with a desired means
to achieving that end. In our sprite-worlds, we identify Sted means” with a constraint
that the agent must pass through an additional specifietidocanroute, such as the via-
point in the experiment frorf§2.3. Because the number of complex goals defined in this
way is much larger than the number of simple goals, the licgld of each complex goal

is small relative to the likelihood of individual simple dea In addition, although path-
dependent goals are possible, they should not be likely axipriVe thus set the prior
P(glw"N) to favor simple goals by a factor of For simplicity, we assume that the agent
draws just a single invariant gogle G from P(g|w'"), and we assume that this prior
distribution is known to the observer. More generally, apray goals may vary across
different environments, and the pri& g|w' V) may have to be learned.

We define the value of a stalg ,,(s) as the expected total cost to the agent of achieying
while following the policy given in Eq. 1. We assume the dediend-state is absorbing and
cost-free, which implies that the agent attemptsstioehastic shortest path (with respect
to its probabilistic policy) [1]. Ifg is a complex goalV, .,(s) is based on the stochastic
shortest path through the specified via-point. The ageatise/function is computed using
the value iteration algorithm [1] with respect to the polgiyen in Eq. 1.

Finally, to compare our model’s predictions with behaviatata from human observers,
we must specify how to compute the probability of novel tcigeiess;. - in a new envi-
ronmentw’, such as the test stimuli in Fig. 1, conditioned on an obskseguencea. in
environmentw. This is just an average over the predictions for each plesgidmlg:

P(86:T|80!Ta w, U)/) = ZgEG P(S6:T|ng/)P(g|80!Ta w, U)/). (4)

5 Spriteworld ssimulations

5.1 Inferringan invariant goal

As a starting point for testing our model, we return to theesipents of Gergely et al. [8,
4, 7], reviewed irg2.1. Our input to the model, shown in Fig. 3(a,b), differglstly from
the original stimuli used in [8], but the relevant detaildrikrest are spared: goal-directed
action in the presence of constraints. Our model predistishown in Fig. 3(c), capture
the qualitative results of these experiments, showinggelaontrast between the straight
path and the curved path in the condition with an obstaclé,aarelatively small contrast
in the condition with no obstacle. In the “no obstacle” cdimh, our model infers that the
agent has a more complex goal, constrained by a via-poims.significantly increases the



probability of the curved test path, to the point where tHitedénce between the probability
of observing curved and straight paths is negligible.
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Figure 3: Inferring an invariant goal. (a) Training inputdbstacle and no obstacle conditions. (b)
Test input is the same in each condition. (c) Model predisionegative log likelihoods of test paths
1 and 2 given data from training condition. In the obstacledition, a large dissociation is seen
between path 1 and path 2, with path 1 being much more likelhé no obstacle condition, there is
not a large preference for either path 1 or path 2, qualéhtisnatching Gergely et al.’s results [8].

5.2 Inferring goals of varying complexity: rational means-ends analysis

Our next example is inspired by the studies of Gergely et@ldpscribed in§2.2. In
our sprite-world version of the experiment, we varied thean of evidence for a simple
versus a complex goal, by inputting the same three trajestaith and without an obstacle
present (Fig. 4(a)). In the “obstacle” condition, the tcapeies were all approximately
shortest paths to the goal, because the agent was forcekktintdirect paths around the
obstacle. In the “no obstacle” condition, no such constraiais present to explain the
curved paths. Thus a more complex goal is inferred, with la patistrained to pass through
a via-point. Given a choice of test paths, shown in Fig. 4y, model shows a double-
dissociation between the probability of the direct path #ral curved path through the
putative via-point, given each training condition (Figc( similar to the results in [6].
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Figure 4: Inferring goals of varying complexity. (a) Traigiinput in obstacle and no obstacle con-
ditions. (b) Test input in each condition. (c) Model pretins: a double dissociation between
probability of test paths 1 and 2 in the two conditions. Tleilacts a preference for the straight path
in the first condition, where there is an obstacle to explanatgent’s deflections in the training input,
and a preference for the curved path in the second conditibere a complex goal is inferred.

5.3 Inductiveinferencein intentional reasoning

Lastly, we present the results of our model on our own behmavexperiment, first de-
scribed in§2.3 and shown in Fig. 1. These data demonstrated the statisaiture of peo-
ple’s intentional inferences. Fig. 5 compares people’gients of the probability that the
agent takes a particular test path with our model’s predtisti To place model predictions
and human judgments on a comparable scale, we fit a sigmagahpmetric transforma-
tion to the computed log posterior odds for the curved tetbt parsus the straight path. The
Bayesian model captures the graded shift in people’s eapens in the “complex goal”
condition, as evidence accumulates that the agent always $& pass through an arbitrary
via-point enroute to the end state.
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6 Conclusion

We presented a Bayesian framework to explain several cpectsof intentional reason-
ing: inferring the goal of an agent based on observationgsdféhavior, and predicting
how the agent will act when constraints or initial condigdar action change. Our model
captured basic qualitative inferences that even prevénfaits have been shown to per-
form, as well as more subtle quantitative inferences thattabservers made in a novel
experiment. Two future challenges for our computatioretfework are: representing and
learning multiple agent types (e.g. rational, irratiomahdom, etc.), and representing and
learning hierarchically structured goal spaces that vargss environments, situations and
even domains. These extensions will allow us to furthertbespower of our computational
framework, and will support its application to the wide raraf intentional inferences that
people constantly make in their everyday lives.

Acknowledgments. We thank Whitman Richards, Konrad Kording, Kobi Gal, Vikaslans-
inghka, Charles Kemp, and Pat Shafto for helpful commerdsdistussions.

References

[1] D. P. Bertsekas.Dynamic Programming and Optimal Control. Athena Scientific, Belmont,
MA, 2nd edition, 2001.

[2] U. Chajewska, D. Koller, and D. Ormoneit. Learning an rageutility function by observing
behavior. InProc. of the 18th Intl. Conf. on Machine Learning (ICML), pages 35-42, 2001.

[3] E.Charniak and R. Goldman. A probabilistic model of ptanognition. InProc. AAAI, 1991.

[4] G. Csibra, G. Gergely, S. Bird, O. Kobs, and M. BrockkarGoal attribution without agency
cues: the perception of ‘pure reason’ in infanGpgnition, 72:237—-267, 1999.

[5] D.C. Dennett.The Intentional Stance. Cambridge, MA: MIT Press, 1987.

[6] G. Gergely, H. Bekkering, and I. Kiraly. Rational imii@n in preverbal infants. Nature,
415:755, 2002.
[7] G.Gergely and G. Csibra. Teleological reasoning inrigfa the naive theory of rational action.
Trends in Cognitive Sciences, 7(7):287—-292, 2003.
[8] G. Gergely, Z. Nadasdy, G. Csibra, and S. Bird. Taking intentional stance at 12 months of
age.Cognition, 56:165-193, 1995.
[9] F. Heider and M. A. Simmel. An experimental study of apgdrbehavior.American Journal
of Psychology, 57:243—-249, 1944.
[10] L. Liao, D. Fox, and H. Kautz. Learning and inferringrigpportation routines. IRroc. AAAI,
pages 348-353, 2004.
[11] A. N. Meltzoff. Infant imitation after a 1-week delay:ong-term memory for novel acts and
multiple stimuli. Developmental Psychology, 24:470-476, 1988.
[12] A.Y.Ngand S. Russell. Algorithms for inverse reinferaent learning. IiProc. of the 17th
Intl. Conf. on Machine Learning (ICML), pages 663—670, 2000.
[13] R. P. N. Rao, A. P. Shon, and A. N. Meltzoff. A Bayesian mlodf imitation in infants and
robots. Inimitation and Social Learning in Robots, Humans, and Animals. (in press).

[14] B. J. Scholl and P. D. Tremoulet. Perceptual causahty animacy. Trends in Cognitive Sci-
ences, 4(8):299-309, 2000.



