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Functional localizer tasks allow researchers to identify brain regions in each individual's brain, using a combina-
tion of anatomical and functional constraints. In this study, we compare three social cognitive localizer tasks,
designed to efficiently identify regions in the “Pain Matrix,” recruited in response to a person's physical pain,
and the “Theory of Mind network,” recruited in response to a person's mental states (i.e. beliefs and emotions).
Participants performed three tasks: first, the verbal false-belief stories task; second, a verbal task including stories
describing physical pain versus emotional suffering; and third, passively viewing a non-verbal animated movie,
which included segments depicting physical pain and beliefs and emotions. All three localizers were efficient in
identifying replicable, stable networks in individual subjects. The consistency across tasks makes all three tasks
viable localizers. Nevertheless, there were small reliable differences in the location of the regions and the pattern
of activity within regions, hinting atmore specific representations. The new localizers go beyond those currently
available: first, they simultaneously identify two functional networks with no additional scan time, and second,
the non-verbal task extends the populations inwhom functional localizers can be applied. These localizerswill be
made publicly available.

© 2016 Elsevier Inc. All rights reserved.
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Introduction

When people read a story or watch a movie depicting another
person's experiences, remarkably reliable and robust patterns of activity
are elicited in the observer's brain. For example, if the protagonist is in
physical pain, observers have increased activity in “Pain Matrix” brain
regions, including bilateral anterior insula and anteriormiddle cingulate
cortex (AMCC; Botvinick et al., 2005; Bruneau et al., 2012; Singer et al.,
2004); if the protagonist is befuddled by a false belief, observers have in-
creased activity in “Theory of Mind” brain regions, including bilateral
temporoparietal junction (TPJ) and medial prefrontal cortex (MPFC; C.
D. Frith and Frith, 1999; Saxe and Kanwisher, 2003). These functional
profiles have been observed across thousands of participants in hun-
dreds of neuroimaging studies utilizing dozens of different tasks (for re-
view, Lamm et al., 2011; Schurz et al., 2014), a challenge for social
cognitive neuroscience remains how to relate the results of each new
study to the previous ones.

The most common approach, in social cognitive neuroscience, is to
compare results via meta-analyses (Costafreda, 2009; Mar, 2011;
Wager et al., 2007). For example, a researcher might run a group
of Technology, Department of
sar St., Cambridge, MA 02139,
analysis on her own data, identify the locations of maximal differences
between conditions (i.e. peaks), and then compare those locations to a
“library” of previously observed peaks. If the activation in her study is
close to activation previously reported for many other studies examin-
ing pain empathy, she can conclude that she has activated regions in-
volved in processing others' pain. The advantage of this approach is
that it allows the researcher to compare her results to hundreds of
prior studies simultaneously, with no extra cost or scan time. However,
the disadvantage of this approach is that group analyses and meta-
analyses lead to substantial spatial blurring, which translates to reduced
sensitivity and underestimation of effect sizes (Nieto-Castañón and
Fedorenko, 2012). Individual brains vary in both anatomy and function.
Alignment of brains to a common space provides an approximate corre-
spondence (Amunts et al., 2000; Crum et al., 2003; Tomaiuolo et al.,
1999). That means that neighboring but functionally distinct brain re-
gions may be aligned to the same place, and also that the functional
loci in different individuals might be aligned to varying locations in
the common space (Nieto-Castañón and Fedorenko, 2012; Saxe et al.,
2006). Due to that blurring, important functional differences between
neighboring regions may be impossible to detect.

An alternative way to link current and past results in support of the-
oretical progress is to identify functional regions in individual subjects.
To use this strategy, the researcher would run her own experiment,
and also a short, robust “localizer” task that identifies regions involved
in e.g. physical pain perception in each individual subject. By running
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an individual localizer in each subject, the functional regions of interest
identified are tailored to each individual's functional organization and
constrained by either their anatomy or a common functional search
space. In visual cognitive neuroscience, for example, almost all
researchers use retinotopic mapping to identify primary visual areas
(Sereno et al., 1995; Wandell et al., 2007; Warnking et al., 2002).
Under some circumstances, independent localizers also allow hypothe-
ses to be tested in a handful of “regions” instead of hundreds of thou-
sands of voxels, thus reducing the problems of multiple comparisons
and increasing the study's sensitivity.

Functional localizer tasks are already in widespread use to identify
brain regions involved in a number of social cognitive processes: for ex-
ample, viewing faces versus other objects, to identify regions involved
in human face processing (Kanwisher et al., 1997); viewinghumanbod-
ies versus other objects, to identify regions involved in human body
form recognition (Downing et al., 2001); viewing biological motion ver-
sus other motion, to identify regions involved in perceiving biological
motion (Grossman et al., 2000); attributing personality traits to one's
self as opposed tomaking other judgments about the same traits, to iden-
tify regions involved in explicit self conception(Kelley et al., 2002); and
reading stories about a person's mental representations versus stories
about physical representations, to identify regions involved in Theory of
Mind (ToM) (Dodell-Feder et al., 2011). Using these localizer tasks has
allowed researchers to aggregate data across many studies (Berman
et al., 2010; Dufour et al., 2013; Spunt and Adolphs, 2014) and build
strong empirical and theoretical connections across different experiments
(Fedorenko and Thompson-Schill, 2014; Kanwisher, 2010).

However, there are significant practical and theoretical obstacles to
using localizer tasks in social cognitive neuroscience. First, the use of
functional localizers is expensive, in both time and money. The cost of
localizers can easily compound, too, as important scientific questions
in social cognitive neuroscience often concern the relative or interacting
roles of multiple regions or networks. Second, there are no established
“localizer” tasks for somekey cognitive functions. For example, PainMa-
trix brain regions can be identified by having participants experience
painful shocks in the scanner, but these experiments require special ex-
pertise and materials, and current protocols are impractically long. In
addition, localizing Pain Matrix through felt pain may not target part
of the PainMatrix that are specifically sensitive to observed or perceived
pain (Morrison and Downing, 2007), whichmight be of specific interest
for social cognitive neuroscientists studying empathy, for example.
Third, many existing localizer tasks require participants to follow com-
plicated instructions or read sophisticated verbal texts. These tasks
therefore cannot be used to identify relevant networks in lower-func-
tioning participants or pre-verbal children. Finally, localizer tasks are a
relatively blunt tool, identifying large regions involved in many aspects
of a task. For example, “face localizer” tasks identify many different
brain regions associated with face processing. Consistently localizing
the set of brain regions allows for follow-up experiments, which could
help to clarifywhich regions are involved in processes such as recogniz-
ing face identity versus facial expressions.

The central goal of the current study is to introduce two novel func-
tional localizers for social cognitive neuroscience. Both of these localizer
tasks are designed to circumvent some of the challenges described
above. In one task, participants read short stories about characters
experiencing physical pain or emotional suffering (the E/P stories
task). Participantswere explicitly instructed to rate the pain or suffering
that the character was experiencing. In the second task, participants
watched a short non-verbal animated cartoon (that was made for
broad entertainment by Pixar Studios and not designed for an experi-
ment). During the movie, characters experience physical pain and con-
sider other characters' thoughts (themovie task). Participants passively
viewed the movie, so any activity was elicited spontaneously by the
events depicted.

The localizer tasks were designed to be short – each novel localizer
task defined both ToM and Pain Matrix brain regions in less than 10
minutes of scanner time – and they were required to be robust and re-
liable; that is, activity in response to physical pain versus mental states
should be observed in the same regions within individuals and should
be identifiable in the vast majority of participants. Each task allows
theuser to identify twodistinct functional networks simultaneously: re-
gions involved in processing of perceived pain and bodily states (e.g.
insula, middle cingulate, secondary sensory regions) and regions in-
volved in ToM (e.g. bilateral temporoparietal junction, posterior cingu-
late, and medial prefrontal cortex). In addition, the movie task has
other advantages: it is extremely short, non-verbal, and requires no in-
structions, and thus could in principle be used with younger, lower-
functioning, or non-native English-speaking participants.

As a benchmark, we compared both tasks to the most commonly
used localizer task for identifying ToM regions, the false-belief task
(Dodell-Feder et al., 2011). Because the false-belief task has been used
in many prior studies, it is important to validate any new localizer task
against this benchmark (Spunt and Adolphs, 2014). Directly comparing
the three tasks also allows us to test the similarity and stability of re-
sponses to ToM tasks across verbal versus non-verbal stimuli, across
three different explicit tasks, and across a range of emotional contents.
Methods

Participants

Twenty right-handed adults (12 females, mean age 25.3, range
18–39) participated in the study for payment. All participants were flu-
ent English speakers,with noneurological or psychiatric conditions, and
had normal or corrected to normal vision. All participants gave written
informed consent in accordancewith the requirement ofMIT's Commit-
tee on the Use of Humans as Experimental Subjects.
False-belief task (FB)

The publicly available false-belief (FB) localizer (Dodell-Feder et al.,
2011) includes twenty stories, all of which describe an outdated repre-
sentation. The false representation is either mentally held by a person
(belief condition – 10 stories) or physically present on an object, such
as a photo or map (photo condition – 10 stories). The stories were pre-
sented in two functional runs with 5 belief and 5 photo stories per run.
Each story was presented for 10 seconds, followed by a true/false ques-
tion about the either the true state of the world or the false representa-
tion (4 seconds). Stimuli were separated by 12 seconds inter-stimulus
intervals, resulting in a total task runtime of 9 minutes, 4 seconds. The
contrast of interest in the task is the belief condition relative to the
photo condition (belief N photo).
Emotional/physical pain stories task (E/P)

In the emotional/physical pain stories task (E/P), participants read
short verbal narratives describing people experiencing events that
were either physically painful (P condition – 10 stories) or emotionally
painful (E condition – 10 stories). The stimuli were pulled from a larger
set of 24 E and 24 P stories (Bruneau et al., 2012) and represent the 10 E
and 10 P stories that were rated to involve the most “emotional pain”
and “physical suffering,” respectively, by an independent group of on-
line participants. The stories were presented in two functional runs
with 5 E and 5 P stories per run. Each story was presented for 12 sec-
onds, followed by 4 seconds in which participants rated how much
pain or suffering the protagonist experienced, from (1) “None” to
(4) “A lot.” Stimuli were separated by 12 seconds inter-stimulus inter-
vals, resulting in a total task runtime of 9 minutes, 44 seconds. The con-
trasts of interest in the task are E N P (ToM network contrast) and P N E
(Extended Pain Matrix contrast).
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Passive animated movie watching task (MOV)

In the passive animated movie watching task (MOV), participants
viewed “Partly Cloudy” (Pixar Animation Studios), an animated short
film. Events in themoviewere coded by the third author and 4 addition-
al observers into 4 conditions: “Control,” in which there are no specific
character related events (e.g. flying birds, wide shot of clouds; 3 events,
24 seconds total); “Social,” in which characters interact without engag-
ing mental/emotional representations (e.g. cloud wrapping and
handing over babies to storks, cloud and stork playing; 5 events, 28 sec-
onds total); “Pain,” inwhich a character is undergoing a physically pain-
ful event (e.g. bitten by a crocodile, electrocuted by an electric eel; 7
events, 26 seconds total); and “Mental,” in which the viewer is led to
think about the character's thoughts (e.g. a characterwhohas just expe-
rienced pain watches others interacting happily, a character falsely be-
lieving he has been abandoned by his companion; 4 events, 44
seconds total). The total length of the movie is 5 minutes, 36 seconds;
total coded time is 2 minutes, 2 seconds. The two contrasts of interest
in the task are Mental N Pain (ToM network contrast) and Pain NMental
(PainMatrix contrast). Due to technical problems, three subjects did not
perform this task.

fMRI acquisition and analysis

Participants were scanned using a Siemens Magnetom Tim Trio 3 T
system (Siemens Solutions, Erlangen, Germany) in the Athinoula A.
Martinos imaging center at the McGovern Institute for Brain Research
at MIT using a 32-channel head coil. Functional images were acquired
with near whole-brain coverage, in 32 near axial 64 × 64 slices (voxel
size: 3.125× 3.125× 3.13mm; 0.313mm interslice spacing, TR=2 sec-
onds, TE = 30 ms, flip angle = 90). High-resolution structural
(anatomical) images were acquired using T1MPRAGE sequence (voxel
size: 1 × 1 × 1 mm).

MRI data were analyzed using SPM8 (http://www.fil.ion.ucl.ac.uk/
spm/software/ spm8/), SnPM (http://www2.warwick.ac.uk/snpm),
and custom software. Each participant's data were motion corrected
and registered to the first image of each run, which was registered to
the first image of the first run. All functional runs were coregistered
with the individual's anatomical scan and all images (functional and an-
atomical) were normalized to a common (Montreal Neurological Insti-
tute, EPI template) brain space, using a non-linear warping algorithm.
Functional images were smoothed using a 5 mm FWHM Gaussian
kernel filter.

First-level analyses were performed by applying a general linear
model (GLM) to the functional data. All models included condition re-
gressors, modeled as boxcar functions matching the onset and duration
of the stimulus convolved with a canonical (double gamma) hemody-
namic response function. Nuisance covariates were included in each
model for run effects, and the time series were subjected to a high
pass filter (1/128 Hz). For group effect analyses, all individual contrast
images were submitted to a second-level random-effects analysis and
corrected for multiple comparisons at p b 0.05 using Monte-Carlo
Simulations (SnPM voxel-cluster correction, with θ = 0.5 (Hayasaka
and Nichols, 2004).

fROI detection rate

An effective localizer is one that is able to reliably identify functional
ROIs (fROIs) within single subjects. To measure the detection rate of
individual fROIS, we first created two sets of search spaces, one for the
ToM network and one for the Extended Pain Matrix using Neurosynth
probabilistic maps (Yarkoni et al., 2011, http://neurosynth.org).
For the ToM network, we used the Reverse Inference map for
“mentalizing” feature, masked with anatomical definitions of 7 ROIs,
which generated search spaces in dorsomedial prefrontal cortex
(DMPFC), ventromedial prefrontal cortex (VMPFC), precuneus (PC),
left/right temporoparietal junction (L/RTPJ), and left/right anterior su-
perior semporal sulcus (L/RASTS). For the Extended Pain Matrix, we
used the Reverse Inference Map for the “pain” feature masked with 5
anatomical ROIs for areas of the Pain Matrix that have been implicated
in both felt and perceived pain, which generated search spaces in ante-
rior middle cingulate cortex (AMCC), left/right insula (L/RIns), and left/
right secondary sensory cortex (L/RSII).

Individual subjects' T-maps were first masked by the pre-defined
search spaces and then thresholded at p b 0.001 for the FB and E/P
tasks; a more lenient threshold of p b 0.005 was used for the MOV
task, since the overall task was shorter and there were fewer events
per condition.

To compare the efficacy of the localizers under different ROI picking
procedures, we used two common fROI picking procedures and applied
them to the first-level T-maps generated by each of the contrasts of in-
terest. In the first picking procedure, all supra-threshold voxels in each
of the search spaces were picked as the fROI, without any contiguity
constraint (as in Julian et al., 2012). In the second procedure, in
each of the search spaces, the cluster with highest T-value and 10
or more contiguous voxels was identified and all supra-threshold
voxels in that cluster within a 9 mm sphere were picked as the fROI
(as in Kuhl et al., 2010; Zaki et al., 2011). For brevity and because
the results are very similar across both methods, all the results of
this and subsequent analyses use the non-contiguous voxels meth-
od; for results on the contiguous 9 mm sphere method, see Supple-
mentary Materials.

Task generalizability

To compare the generalizability of fROIs across tasks, we identified
individual fROIs in one task and used them as independent localizers
to probe for activity in another task. Specifically, we picked fROIs
using the verbal tasks (FB and E/P) as localizers and tested whether
those voxels were also sensitive to the condition differences in the
MOV task despite the differences in nature of contrasts and stimuli.
We extracted the beta values for all the MOV conditions and tested if
the response to theMental condition in ToMbrain regions is significant-
ly higher than to the Pain condition. Conversely, in the Pain Matrix, we
tested if the response to the Pain condition is significantly higher than to
the Mental. The statistical testing was done with a t-test with a signifi-
cance threshold of p b 0.0071 for ToM brain regions (Bonferroni
corrected for 7 ROIs), and p b 0.01 for Pain Matrix ROIs (Bonferroni
corrected for 5 ROIs).

Overlap analysis

To determine the extent to which the tasks elicited overlapping pat-
terns of activation within individual subjects, we compared the number
of voxels showing a significant response in each task (i.e. the conjunc-
tion across tasks) to the number of voxels showing a significant
response across runs, within a task (i.e. a measure of test–retest reliabil-
ity, TRR) – this allowed us to ask how much the two tasks overlap
relative to the maximum observable overlap, given the noise in the
measurement. This analysis (and all analyses that require two
runs for cross-validation) was only performed on the FB and E/P
tasks, for which we had two runs (10 trials per condition) per
participant.

For this overlap analysis,we applied the two fROI pickingprocedures
(contiguous and non-contiguous) to the individual first-level analysis
maps of each run separately. This procedure allowed us to match the
statistical power of the maps in each of the voxel sets. TRR voxels
were defined as the conjunction between the union of voxels respon-
sive (p b 0.001) to either task in the first and second run:

Vox TRRð Þ ¼ Vox }FB} run1ððð Þ∪Vox }E=P} run1ð ÞÞ∩ Vox }FB} run2ð Þ∪ð Vox }E=P} run2ð ÞÞ
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The between-task overlap (TO) was defined as the conjunction of
the voxels that were responsive (p b 0.001) to both tasks:

Vox TOð Þ ¼ Voxð }FB}run1ðð Þ∪Vox }FB} run2ð ÞÞ∩ Vox }E=P} run1ðð Þ∪Vox }E=P} run2ð ÞÞ

This allowed us to quantify the across-task overlap against a mea-
surement of test–retest reliability:

Overlap ¼ Vox TOð Þ
.

Vox TRRð Þ

Location of fROIs

To determine whether the spatial relations between tasks were sta-
blewithin participants,we calculated the average x, y, and z coordinates
across all active voxels in each fROIs (for both fROI pickingmethods sep-
arately), per subject per task. We then used a two-tailed t-test on the
mean individual activation in each coordinate to identify systematic dif-
ferences in activation across individuals, between tasks (e.g. how close
the average z coordinate of one functional region as identified by the
FB task is to the average z coordinate of that functional region as identi-
fied by the E/P task). The statistical threshold for significance was set to
p b 0.0024 (Bonferroni corrected accounting for 7 ROIs and 3 directions,
as family-wise errors). Trends (0.0024 b p b 0.05) that did not survive
this conservative correction for multiple comparisons are also reported.

Spatial patterns

A complementary spatial distribution analysis using multi-voxel
pattern analysis (MVPA)was performed to examinewhether the differ-
ent tasks elicit stable spatial patterns inside ROIs. If the different tasks
activate the same locations, there could still be systematic differences
in activity that is not driven by the concentration of task-responsive
voxels within anROI (themeasurement used to pick voxels in that anal-
ysis is a threshold on the p value of a voxel's fit with the model), but in-
steadby the spatial distribution of task responsivity (asmeasuredby the
contrast of beta values) within the ROI. In order to test for such differ-
ences, we extracted the contrast responses per run to the FB and E/P
tasks from all the voxels in each of the search spaces following Haxby
et al., 2001).We then calculated the correlation between the spatial pat-
terns (i.e. response of all voxels in an ROI) in the first run of each task to
the spatial patterns in the second run of both task's contrasts. The re-
sults were then z-scored using Fisher transformation. The within-task
correlations (correlation between the first and second run of each
task)were averaged across tasks, as were the between-task correlations
(correlations between the first run of FB and the second run of E/P and
vice-versa). The average within-task and between-task z scores were
calculated for each individual, and then a paired-samples one-tailed t-
test (Bonferroni corrected for 7 ROIs) was used to identify reliably
higher within- than across-task correlations.

Localizer choice effect

Finally, we examined the effect of choosing the FB versus E/P
localizer tasks for subsequent analysis of the MOV activity. To do this,
we used the beta values extracted from MOV from the fROIs defined
by FB and E/P in the generalizability analysis and examined activity
across all conditions. We ran a mixed model effect with subjects as a
random variable, and localizer (FB or E/P) and condition (Mental, Pain,
Social, or Control) as fixed variables. We also conducted paired-
samples t-tests to identify effects of fROI definition on specific condi-
tions. All the tests were Bonferroni corrected for multiple comparisons.
Results

Whole-brain analysis

Whole-brain analyses were used to determine the general extent of
activity generated by each of the localizer tasks and to visualize gross
overlap across tasks. Whole-brain analysis results of the respective
ToM contrasts across each of the 3 tasks showed reliable recruitment
of the ToM network (bilateral middle temporal lobes extending up
through the STS to the TPJ, PC, VMPFC, and DMPFC; Figs. 1a–c,
Table 1). These results replicate previous studies using the false-belief
(Dodell-Feder et al., 2011; Saxe and Kanwisher, 2003) and the E/P
stories task (Bruneau et al., 2012; 2013; 2015) and extend the findings
to the novelMOV task. Fig. 1d shows the extent of ToMoverlap across all
three tasks.

Whole-brain analysis of the Pain contrasts from the E/P and MOV
tasks show significant recruitment of both brain regions associated
with self/perceived pain (i.e. ‘PainMatrix’: bilateral insula, anteriormid-
dle cingulate cortex (AMCC), secondary sensory (SII), premotor, middle
frontal gyrus (MFG)) and brain regions associated with action and body
perception (extrastriate body area (EBA)) in both tasks (Fig. 2a–b,
Table 2). The results from the E/P task replicate previous studies using
a superset of the stimuli used in the current study (Bruneau et al.,
2012, 2013, 2015) and extend the findings to the MOV task (Fig. 2b,
Table 2). Fig. 2c shows the extent of overlap in activation between
both tasks.

Together, these results indicate that verbal stimuli from the FB
localizer and E/P task activate very similar ToMbrain regions across sub-
jects and that regions identified by the novel, non-verbal MOV task
were remarkably similar to those generated by the verbal tasks at the
group level.

Detection rate

Requisite for an effective functional localizer is the ability to reliably
identify fROIswithin individual subjects. To determine the robustness of
each localizer task, we determined the number of participants in which
each of the localizer's fROIs could be identified. Both verbal tasks (FB
and E/P) led to extremely high fROI detection rates (every fROI identi-
fied in N80% of participants). The fROI detection rate for the MOV task
also showed a very high identification rate (at the reduced threshold
of p b 0.005) for most ROIs (every fROI identified in N70% of partici-
pants; Figs. 3, 4 “Detection rate”).

Task generalizability

To determine how generalizable the fROI identification was across
tasks, we cross-validated each verbal localizer by identifying fROIs
with one task and extracting activity for each of the MOV task condi-
tions: Mental, Pain, Social, and Control. In particular, we wanted to de-
termine if the activity in the MOV-Mental condition is reliably higher
than to the MOV-Pain condition in the ToM fROIs identified by the ver-
bal tasks, and if activity during MOV-Pain is reliably higher than during
MOV-Mental in the Extended Pain Matrix fROIs identified by the verbal
tasks.

Activity in the MOV Mental N Pain contrast was significant (at a
corrected threshold of p b 0.0071) across all ToM fROIs picked by the
FB and the E/P localizers, except for trends in E/P-picked RASTS
(t(15) = 3.02, p = 0.008), FB-picked LASTS (t(15) = 2.77, p = 0.014),
and FB-picked VMPFC (t(13) = 2.72, p = 0.017). Activity in the MOV
Pain N Mental contrast was significant (at a corrected threshold of
p b 0.01) across all Extended Pain Matrix fROIs picked by the E/P
localizer (Figs. 3, 4 “Movie task extraction”).

These results indicate that the fROIs can be identified with localizers
that present others' thoughts/feelings or pain, across modalities (verbal
to visual) and task demand (active judgments vs. passive viewing).



Fig. 1.Whole-brain response (p b 0.05 corrected) to the different ToM contrasts. (a) false-belief task: Belief N Photo; (b) emotional/physical pain stories: Emotional N Physical; (c) passive
animatedmoviewatching task:Mental N Pain; (d) overlap in additive color scheme corresponding to the colors in panes (a)–(c). Abbreviations: D/VMPFC, dorsal/venttalmedial prefrontal
cortex; L/RSTS, left/right superior temporal sulcus; L/RTPJ, left/right temopro-parietal junction; PC, precuneus.
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Overlap analysis

In order to directly compare the similarity of ToM activity generated
across the FB and E/P localizer tasks, we examined how many supra-
threshold voxels identified by the FB and E/P tasks overlapped in compar-
ison to the number of test–retest reliably activated voxels. In all of the
ROIs, we found a high rate of over 50% overlapping voxels (DMPFC –
83%; VMPFC – 94%; PC – 88%; LTPJ – 72%; RTPJ – 90%; LASTS – 59%;
RASTS – 95%; Fig. 3, “Overlap analysis”). This pattern suggests two things.
First, the numbers are remarkably high, especially given that the picking
Table 1
Brain regions active (p b 0.05 corrected) for the ToM contrast in the 3 different tasks. Showing

False-belief task E

Cluster Region n voxels x y z Peak t n

ToM network regions
1 Precuneus 2775 0 −52 34 10.14 3
2 Dorsal medial prefrontal cortex 1549 −6 54 22 6.25 C
3 Ventral medial prefrontal cortex 388 4 46 −16 6.07 4
4 R temporoparietal Junction Cluster 6 50 −54 22 8.42 1
5 R superior temporal sulcus Cluster 6 50 −18 −12 8.33 2
6 R temporal pole 4721 52 4 −34 9.07 C
7 L temporoparietal junction 3853 −50 −60 24 10.13 C
8 L superior temporal Sulcus Cluster 7 −52 −2 −22 7.51 3
9 L temporal pole −52 6 −32 6.82 C

Other regions
10 R middle frontal gyrus 323 26 30 42 5.16 C
11 L middle frontal gyrus 277 −20 30 36 5.42
12 R hippocampus 1
13 L hippocampus 2
14 L angular gyrus 1
15 Calcerine sulcus 5
16 R lateral occipital
procedures were iterated on single runs of single subjects. Second, al-
though the fROIs identifiedby thedifferent tasks follow the samenetwork
structure, small differences in overlaps suggest that they may neverthe-
less have subtle spatial differences.

Location of fROIs

In order to further characterize the differences identified by the
overlap analysis in ToM activity generated by FB and E/P tasks, we com-
pared the mean location of activation between the tasks (Fig. 3,
brain regions, cluster extent, local peaks in MNI, peak (pseudo), t value.

motional/physical pain stories task Movie watching task

voxels x y z Peak t n voxels x y z Peak t

095 −2 −56 32 13.69 5494 14 −58 26 7.50
luster 3 2 54 10 6.24 Cluster 11 −10 56 32 5.29
297 0 38 −18 12.48 Cluster 11 2 54 −12 5.02
396 50 −56 26 10.06 Cluster 16 52 −56 30 5.19
459 60 0 −16 8.45
luster 5 46 16 −38 8.45
luster 14 −50 −60 24 7.54 Cluster 14 −52 −58 34 4.88
348 −64 −10 −22 12.36 645 −56 −24 −6 6.03
luster 8 −48 14 −36 7.75

luster 3 32 28 48 5.26 648 24 28 40 6.81
−42 6 54 5.39 3328 −40 18 38 5.72

57 26 −18 −18 6.31
33 −24 −18 −20 7.16
325 −46 −68 34 8.72 1503 −44 −54 24 5.26
60 −10 −94 −2 6.21

1525 40 −74 38 7.14



Fig. 2.Whole-brain response (p b 0.05 corrected) to the different Pain Matrix contrasts (a) emotional/physical pain stories: Physical N Emotional; (b) passive animated movie watching
task: Pain NMental; (c) overlap in additive color scheme corresponding to the colors in panes (a)–(b). Abbreviations: AMCC, anterior middle cingulate cortex; L/RINS, left/right insula; L/
RSII, left/right secondary sensory.
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“Relative location”’). Overall, the mean coordinates identified by the
two tasks were very similar, but there were some reliable differences
in location of some of the ROIs. Most notably, the LTPJ is more anterior
and inferior in FB activation compared to E/P activation (y axis:
t(19)=5.6, p b 0.001; z axis: t(19)=4.99, p b 0.001). This result is con-
sistent with the difference observed in the overlap analysis. A similar
pattern is observed in the RTPJ (y axis: t(19) = 4.44, p b 0.001; z axis:
t(19) = 3.7, p = 0.0015).

A few results showed trends of differences (i.e. 0.05 b p b 0.0024). In
the PC, activation in the FB task showed a trend to be superior to E/P ac-
tivation (t(19) = 3.02, p = 0.007). Another trend was observed in the
VMPFC, where FB activation was anterior to E/P activation (t(15) =
2.76, p = 0.0145). More trends that were observed are LTPJ was more
Table 2
Brain regions active (p b 0.05 corrected) for the PainMatrix contrast in the 2 different relevant t
Area.

Emotional/physical pain stories task

Cluster Region n voxels x y

Pain Matrix regions
1 Anterior middle cingulate Cortex 1377 −2 4
2 R anterior insula Cluster 7 34 18
3 R postcentral gyrus 1358 60 −28
4 L anterior insula Cluster 8 −28 16
5 L postcentral gyrus 2487 −60 −26

Other regions
6 L posterior cingulate cortex 1146 −12 −30
7 R inferior frontal gyrus / insula 3503 44 40
8 L Insula 4098 −36 −14
9 L orbital frontal cortex 546 −26 34
10 L middle temporal gyrus 1478 −52 −64
11 R middle temporal gyrus 535 56 −62
12 R thalamus 257 10 −12
13 R posterior cingulate cortex 499 16 −34
14 L middle frontal gyrus 425 −24 −4
15 L uncus 223 −30 −2
16 Cerebellum 87 26 −68
17 Superior occipital gyrus 100 −34 −86
18 L Lateral/ventral occipital
19 L precentral gyrus
20 R cuneus
21 L amygdala
lateralized in FB thanE/P (t(19)=3.15, p=0.005) and LASTS activation
in FB was superior to E/P (t(17) = 2.68, p = 0.0158).

Spatial patterns

To examine overlap at a smaller spatial scale, we also compared
voxel-level pattern differences observed across the FB and E/P tasks.
We extracted the beta response of all voxels in the search spaces, from
the first and second runs of the two verbal tasks, and calculated the spa-
tial correlationwithin and across tasks (Fig. 3, “Spatial correlation”). In 6
out of 7 of the search spaces used, the within-task correlation was
significantly higher than the across-task (at a corrected threshold of
p b 0.0071), and the last ROI, DMPFC, was below the statistical corrected
asks. Showing brain regions, cluster extent, local peaks inMNI, peak t value, and Broadman

Movie watching task

z Peak t n voxels x y z Peak t

32 8.78 181 2 2 34 6.72
2 6.00 Cluster 7 42 4 −6 6.65
38 9.60 3158 64 −24 28 7.85
4 5.23 Cluster 8 −38 10 −6 5.38
34 9.19 2887 −58 −26 40 8.61

40 10.56 53 −8 −26 42 5.94
2 10.52 2051 38 −2 14 7.48
−4 8.84 2409 −40 −2 −4 7.72
−16 9.68 111 −28 32 −14 7.44
2 8.04 Cluster 18 −48 −60 −10 7.00
0 7.85 1489 56 −56 −12 7.80
−4 5.48 591 14 −30 −2 5.20
40 7.64
56 6.75
−40 6.67
−24 5.89
34 5.59

5078 −14 −84 36 7.50
334 −40 −8 56 6.27
698 32 −66 24 6.22
133 −24 6 −16 6.05



Fig. 3. The results of all analyses on ToM brain regions, presented by region of interest. Detection rate: minimum of 10 voxels with p b 0.001 (p b 0.005 inmovie task) in individual; movie
task extraction: beta estimate to all conditions in themovie task, extracted from fROIs definedwith either FB or E/P task; overlap analysis: relative portions of overlapping voxels and non-
overlapping voxels in relation to the number of reliably activated voxels in each ROI; relative location: relation between the mean activation coordinate of the different tasks on 3 axis;
spatial correlation: mean correlations within task and correlations between task.
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threshold (t(19)= 2.02, p=0.029). These results show that the global
similarity in overlap and peak activity across tasks belies a reliable dif-
ference at a finer grained level: at the individual voxel-level, multi-
voxel pattern activity can be used to reliably decode task (FB and E/P)
in a number of ToM brain regions. This is true for both cases where
there is a noticeable difference in the distribution of the univariate sig-
nal such as bilateral TPJ (as identified by the location of fROIs analysis
above), but also in ROIswhere the differences in distribution are smaller
or negligible.

Localizer choice effect

Given that fROIs selected from the FB and E/P tasks are not perfectly
overlapping, how does the difference in the ROI that has been picked af-
fect the response of the fROImeasured in an independent task? In other
words, do the two localizers identify fROIs that are similar in function/
functional profile even though they are not exactly similar in space?
To examine this question, we compared the beta responses extracted
from the FB versus E/P fROIs for the MOV task conditions (Figs. 3, 4
“Movie task extraction”).

We tested for differences in response across ToM fROIs defined by FB
versus E/P using a mixed effect model. We found amain effect of condi-
tion (p b 0.0071) in DMPFC, LTPJ, RTPJ, and PC, and a trend that did not
survive correction for multiple comparisons in all other fROIs: LASTS
(F(3,45) = 4.37, p = 0.0087); RASTS (F(3,45) = 4.41, p = 0.0084);
VMPFC (F(3,36) = 4.51, p = 0.0087). There was no main effect of
localizer in any of the ROIs (all Fs b 2.62, NS) and no significant or
trend interaction between localizer and condition (significant nor
trends) in any of the ROIs, except LTPJ (F(3,48) = 6.06, p = 0.0014).

This indicates that the functional profile of the picked fROI is similar
between the two tasks, both when looking at conditions of interest and
when looking at the neural representations of other conditions in the
same fROIs.

Discussion

We used two novel “localizer” tasks to identify brain regions in-
volved in Theory of Mind and brain regions involved in the perception
of physical pain. We compared these tasks to the most widely used
existing localizer for ToM, the false-belief task. Both of the novel tasks
were robust, allowing us to identify the majority of the targeted func-
tional regions of interest in almost every participant. Furthermore, the
three different tasks converged, producing largely overlapping regions
in individual participants, showing that these regions are stable across
varying stimuli and tasks. We hope that these two novel tasks will be
useful to many social cognitive neuroscientists, whose experiments
often involve consideration of characters' minds, bodies or both. All
three localizer tasks are now publicly available at http://saxelab.mit.
edu/.

There are threemain advantages to the novel localizers. First, both of
the novel localizers identify two distinct networks simultaneously and
thus are more efficient than the false-belief task, which only identifies
one functional network. Second, themoviewatching task has the lowest
demands of any existing localizer task, and so could be used in children,

http://saxelab.mit.edu/
http://saxelab.mit.edu/


Fig. 4. The results of all analyses on PainMatrix brain regions, presented by region of inter-
est. Detection rate: minimum of 10 voxels with p b 0.001 (p b 0.005 in movie task) in in-
dividual;movie task extraction: Beta estimate to all conditions in themovie task, extracted
from fROIs defined with E/P task.
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non-native English speakers, and lower-functioning participants. Third,
although hundreds of prior studies have examined activity in the Ex-
tended Pain Matrix, there is no simple robust localizer task that can be
used to identify these regions in individual subjectswithout the applica-
tion of direct pain to the subjects (as in Corradi-Dell'Acqua et al., 2011).
By manipulating vicarious experiences of pain, the current localizers
will allow researchers to identify these regions safely, without requiring
participants to undergo physical pain themselves and without the need
for a special MR safe setup. Each localizer task identifies two brain net-
works in less than 10 minutes of scan time.

In addition to revealing robust and stable regions of activity across
tasks, our results also suggest subtle differences in the response of
ToM regions to the two verbal tasks. For example, the average coordi-
nates of response to the two tasks were reliably different in left
temporoparietal junction, and in almost all regions, the pattern of re-
sponse within the region was reliably different for the two tasks. One
possibility is that these differences reflect a distinct pattern of response
to affective (emotional) versus non-affective (false belief)mental states.
However, a prior study that directly tested this hypothesis found differ-
ent patterns of response to affective versus cognitive states in medial
prefrontal cortex, but not in bilateral TPJ (Corradi-Dell'Acqua et al.,
2014). Our results suggest an alternative possibility: that these differ-
ences in patterns of activity within fROIs associated with Theory of
Mind are driven by the different “control” conditions in the two tasks
(Berman et al., 2010). The E/P task uses stories about bodily physical
pain as the control condition and yields overall group activity similar
to the movie task (which also uses physical pain as the control condi-
tion). On the other hand, the FB task uses a non-human “photograph”
control condition.

Note that these small but reliable differences in the regions' re-
sponses to these three tasks reflect one of the key limits of localizer
tasks. The ideal localizer task is a robust but blunt instrument, identify-
ing functional regions that almost certainly contain many distinct func-
tions and neural sub-populations (i.e. populations with different
functional profiles within the same voxel/region). For example, both
of the networks described here are spatially similar to two “intrinsically
connected” networks commonly found in resting state analysis (Fox
et al., 2005; Thomas Yeo et al., 2011): the ToM brain regions are similar
to the “default mode network” (DMN; Buckner et al., 2008), implicated
in rumination and internally directed thoughts, while the Pain Matrix
regions are similar to the “salience network,”which shows increased ac-
tivity during externally directed attention across a wide range of exper-
iments (Bzdok et al., 2013; Yarkoni et al., 2011). Thus, it is important to
ask whether the regions identified by these localizers are entirely over-
lappingwith these two functional networks; and if so,whether these re-
gions' true functions are specific to the social domain, or more general.
We hypothesize that the regions identified by our localizers do play a
specific role in thinking about other's minds and bodies, partly because
our studies include control conditions designed tomatch “salience,” and
partly because prior studies have identified both spatial and functional
dissociations, for example, between brain regions involved in Theory
of Mind and the DMN (Andrews-Hanna et al., 2010, 2014; Lombardo
et al., 2010). However, a more definitive answer to this question could
be obtained by identifying the loci of responses for ToM and DMN,
and Pain Matrix and Salience Network, using resting state and localizer
tasks, within individual subjects. The localizers described here would
provide an efficient means of examining questions such as these.

Another distinct localizer task for the ToM regions was recently de-
veloped and validated by Spunt and colleagues (Spunt and Adolphs,
2014). The “Why/How” task requires participants to watch the same
photograph of a character's action, while performing two distinct ex-
plicit tasks: judging either how (i.e. with which muscle movements)
the action was performed, or why (i.e. in what context, or with what
goals) the action was performed. Activity during the “Why” task was
largely overlapping with the false-belief task, suggesting that the
“Why” task activates ToM. On the other hand, within ToM regions, the
“Why” task elicited a distinct pattern of activation from the false-belief
task. Thus, as in the current data, two different localizers identify the
same region, but activate different sub-populations within that region.
More generally, distinct sub-populations within the same ToM region
may contain information about distinct features or aspects of mental
states (Contreras et al., 2013; Skerry and Saxe, 2015). A promising strat-
egy for future research is therefore to identify brain regions implicated
in ToM using a localizer task and then directly study the information
represented in those regions using more minimal experimental manip-
ulations and finer grained analysis techniques like multi-voxel pattern
analyses and representational similarity analyses (Haxby et al., 2014;
Kriegeskorte, 2008; Kriegeskorte and Kievit, 2013).

An alternative approach to using a separate localizer task is to func-
tionally identify ROIs by building an orthogonal contrast into the main
experiment as suggested by (Friston et al., 2006). In some cases, this
could be efficient because it does not require collecting any additional
data and uses a contrast that is directly related to the experimental de-
sign and psychological processes under consideration. On the other
hand, this approach has the disadvantage that each new experiment
will use a slightly different contrast to localize the “same” regions or
networks. Our current results suggest that differences in the precise
contrast can result in subtle spatial differences in the regions localized.
Using standardized, separate localizers is the only way to ensure that
the “same” region is under investigation across studies and labs. Also,
the standardized localizers are highly powered, so experimenters
know in advance that regions will be identified in most individual sub-
jects, whereas novel orthogonal contrasts may turn out to have less
power than expected.

Given the largely similar but still reliably distinct patterns of activa-
tion observed across the current three localizer tasks, can different
localizers be used interchangeably, and can we directly compare exper-
iments that used different localizers? The generalizability analysis and
the overlap analysis suggest an answer to the first question. The overall
voxel overlap as measured in the overlap analysis was very high in all
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the ROIs (59% overlap in the most divergent ROI). Moreover, when we
extracted all experimental conditions of the movie task from the voxels
picked by the two verbal localizer tasks, the only ROI where there was a
condition by localizer interaction was the LTPJ. This ROI showed one of
the lowest overlap rate (72%) and themost stable between-tasks differ-
ence in both location and pattern. Overall, this suggests that, for the
most part, the localizers identify the same voxels. Therefore, if the goal
is to identify voxels that are involved in Theory of Mind processing,
the tasks can be used largely interchangeably (and indeed, the main
ToM contrast from the movie task remained highly significant regard-
less of the choice of localizer). On the other hand, the significant differ-
ences observed here in average location and within-region patterns
suggest that for analyses that depend on relatively subtle effects, such
asmulti-voxel pattern analyses, it may be important to compare results
only across studies that use the same localizer task.

Another question not addressed by the current research is: How sta-
ble would the results of these localizers be, within an individual over
time? Although anecdotal evidence suggests that activation patterns re-
main stable over many decades in adulthood, this claim has yet to be
formally tested, especially for brain regions involved in social cognition
(though Mahowald and Fedorenko, under review, have tested that
question as it pertains to the language system, showing somepromising
results). Changes in patterns activation may also occur related to both
social experiences (e.g. college) and maturation in early adulthood. An
additional related area for future work is individual variability in
mentalizing skills. How do different mentalizing skills relate to one an-
other within different individuals behaviorally and neurally? Such re-
search will have to use paradigms that create substantial performance
variability between subjects and would benefit from the methodologi-
cal advances of utilizing functional localizers.

When choosing a localizer task, there are also practical consider-
ations. Localizers vary in both the extent and reliability of activation
(Berman et al., 2010) which should be taken into account. Another con-
sideration is efficiency; in this case, both of the two novel localizers, the
Emotion/Pain stories task and the movie task, have two contrasts of in-
terest and are designed to localize two theoretically important networks
at the same time. Thus, they aremore efficient than the traditional false-
belief localizer, and offer a built in “control network"”for hypotheses
that are specific to one network. In addition, a key practical advantage
of the movie task is that is an ecologically valid task: participants pas-
sively view a non-verbal cartoon, with no explicit task instructions.
The movie is engaging and approachable, making it more appropriate
for use in children and lower-functioning populations.

Conclusions

In sum, here we introduce and validate two novel localizer tasks for
use in social cognitive neuroscience. The emotion/pain stories task and
the movie task can both be used to identify, in individual participants,
functional regions implicated in Theory of Mind and in processing
pain and bodily states. Both tasks are short (b12 minutes) and robust
in individual participants. The identified networks of activity converge
across task modality and stimulus content with the commonly used
false-belief localizer task. There are small reliable differences between
the localizers, in the location of the regions activated and in the pattern
of activity within each region, hinting at more specific representations
within each region. Still, the consistency across tasks makes both
novel tasks viable localizers, and we hope many researchers in social
cognitive neuroscience will find them useful.
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