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A B S T R A C T

The human capacity to reason about others' minds includes making causal inferences about intentions, beliefs,
values, and goals. Previous fMRI research has suggested that a network of brain regions, including bilateral
temporo-parietal junction (TPJ), superior temporal sulcus (STS), and medial prefrontal-cortex (MPFC), are reli-
ably recruited for mental state reasoning. Here, in two fMRI experiments, we investigate the representational
content of these regions. Building on existing computational and neural evidence, we hypothesized that social
brain regions contain at least two functionally and spatially distinct components: one that represents information
related to others' motivations and values, and another that represents information about others' beliefs and
knowledge. Using multi-voxel pattern analysis, we find evidence that motivational versus epistemic features are
independently represented by theory of mind (ToM) regions: RTPJ contains information about the justification of
the belief, bilateral TPJ represents the modality of the source of knowledge, and VMPFC represents the valence of
the resulting emotion. These representations are found only in regions implicated in social cognition and predict
behavioral responses at the level of single items. We argue that cortical regions implicated in mental state
inference contain complementary, but distinct, representations of epistemic and motivational features of others'
beliefs, and that, mirroring the processes observed in sensory systems, social stimuli are represented in distinct
and distributed formats across the human brain.
1. Introduction

Successful social interaction requires reasoning about the minds of
other people: observing not just how someone is behaving, but inferring
why they are behaving that way. By considering mental states – desires,
values, beliefs, and expectations – we can predict, explain, and evaluate
each other's actions, building a “theory of mind” (ToM). How does the
human brain support these complex, fast, and often spontaneous social
inferences? Existing neuroimaging research suggests where to look: a
group of brain regions is robustly and reliably recruited when partici-
pants consider the minds of other people, including temporal parietal
junction (RTPJ, LTPJ), right superior temporal sulcus (RSTS), precuneus
(PC), and medial prefrontal cortex (MPFC) (Saxe and Powell, 2006) (for
reviews see (Carrington and Bailey, 2009; Frith and Frith, 2012)). While
earlier research has focused on localizing regions selectively involved in
bridge, MA 02139, USA.
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mental state reasoning, a critical open challenge is to systematically
characterize the processes that are supported by different components of
this system.

One powerful way to probe neural processes is to ask how the rep-
resentation of a stimulus is reformatted at each stage of neural compu-
tation: different populations of neurons within a network may contribute
to a common task by representing different features or aspects of the
same stimulus or task. In the ventral visual stream, stimuli are repre-
sented in distinct and distributed formats across regions; e.g., while one
neural population represents an item's color, a distinct population rep-
resents its shape (DiCarlo et al., 2012; Kamitani and Tong, 2005; Kourtzi,
2001; Lafer-Sousa and Conway, 2013; Tanaka, 1993). Asking which
features of a stimulus can be linearly decoded from each population of
neurons can reveal the kinds of representations that those populations
support – if a region distinguishes between blue and red stimuli, it likely
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represents color; if it distinguishes between squares and circles, it likely is
sensitive to shape. Thus, this approach can inform our understanding of
both what specific neural populations within a network are doing, and
the processes engaged by the network as a whole.

Here, we leveraged this approach to probe the representational ar-
chitecture of mental state inference. Building on existing computational
and neural evidence, we hypothesized that theory of mind in the human
brain contains at least two functionally and spatially distinct compo-
nents: one that represents information related to others' motivations and
values, and another that represents others' epistemic states – evaluating
the source of their beliefs and knowledge. State of the art computational
models of intuitive ToM suggest that these two components are sufficient
to accurately model basic social behavior, using (i) a model of planning,
to predict the action an agent will choose given their goals, desires,
values, costs, and beliefs; and (ii) a model of belief formation, to predict
the beliefs the agent will form given their perceptual access and infer-
ential processes (Baker et al., 2017, 2009; Bello, 2012; Jara-Ettinger
et al., 2012).

Moreover, multiple lines of evidence suggest regions in the ToM
network may be differentially sensitive to tasks and stimuli related to
motivational versus epistemic reasoning. Previous work examining
overall activity of different regions finds that lateral regions (right and
left TPJ) are recruited more by stimuli and tasks requiring reasoning
about others' beliefs and intentions (epistemic or “cognitive” ToM
(Schlaffke et al., 2014; Schnell et al., 2011)), while medial PFC is
recruited more by inferences about emotions and preferences (motiva-
tional or “affective” ToM (Amodio and Frith, 2006; Etkin et al., 2011;
Hynes et al., 2006; Sebastian et al., 2012; Shamay-Tsoory and Aharon-
Peretz, 2007; Shamay-Tsoory et al., 2006; Leopold et al., 2011;
Shamay-Tsoory, 2011)).

We hypothesized that the differential activation observed in these
regions reflect a division in the types of computational processes sup-
ported by these regions – a socially relevant stimulus will be represented
in RTPJ in an epistemic feature space, while the same stimulus will be
represented in MPFC in a motivational feature space, each region
collapsing across some dimensions of the stimuli, while emphasizing
others. This hypothesis is supported by growing evidence suggesting that
the population-level activity in MPFC contains abstract, multimodal in-
formation relevant to the motivational component of ToM. Systematic
patterns of activity in MPFC are evoked when observing another indi-
vidual (a) make a positive versus negative dynamic facial expression
(Harry et al., 2013; Peelen et al., 2010; Said, 2010; Said et al., 2010), (b)
make a positive versus negative vocal expression (Peelen et al., 2010), (c)
succeed versus fail to complete a goal (like throwing a ball into a net)
(Skerry and Saxe, 2014), or (d) get included in versus excluded from a
social group (Skerry and Saxe, 2014). How pleasant the experience is for
the protagonist (i.e., the valence of the experience) best explains the
pattern of response in MPFC to verbal descriptions of 200 unique
emotional events (Skerry and Saxe, 2015).

However, a key open question is whether there is neural evidence for
an epistemic component of ToM (reasoning about the epistemology of
others' beliefs) that is distinct from motivational representations. Earlier
work – leveraging previously collected data designed to ask orthogonal
questions – hints that relevant epistemic information about others' beliefs
may be represented by population-level activity in TPJ. For example,
bilateral TPJ contains information about the perceptual source of another
person's knowledge: whether beliefs were formed based on visual or
auditory evidence (Koster-Hale et al., 2014). Moreover, TPJ tracks
whether a harmful action was taken with full foreknowledge versus in
ignorance (Koster-Hale et al., 2013). Here, we directly test the hypothesis
that TPJ supports processes related to this kind of social
epistemic reasoning.

Building on this previous work, this study examines whether social
stimuli, like sensory stimuli, are reformatted into distinct and comple-
mentary representations across the human brain, by testing whether
processes supporting motivational and epistemic components of ToM are
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functionally distinct, and whether these processes are reflected in neural
populations in MPFC versus TPJ, respectively. We presented verbal
narratives describing others' mental states, using minor changes in
wording to simultaneously manipulate features relevant for evaluating
beliefs and predicting emotions. First, replicating previous work, we
manipulated whether the evidence for a belief was visual or auditory (the
modality of the evidence). Second, in a previously untested manipula-
tion, we changed whether the agent's evidence was strongly or weakly
supportive of the belief (the justification of the belief). Evidence justifi-
cation provides a particularly strong test for features of intuitive episte-
mology because it is abstract (rather than tied to specific sensory
features), context specific (what might be good evidence for one
conclusion could be poor evidence for another), and directly related to
reasoning about the minds of others (determining whether the agent is a
reliable, rational informant (Kovera et al., 1991; Miene et al., 1993;
Olson, 2003)). Third, we manipulated whether the agent heard evidence
first-hand versus via hearsay (reported from another character), as a test
of whether the directness of evidence is represented in social brain re-
gions. This manipulation was motivated by work on testimony and
communicative inference (Kovera et al., 1991; Miene et al., 1993; Olson,
2003), developmental research on trust and testimony (Cl�ement et al.,
2004; Koenig and Harris, 2005; Lucas et al., 2013; Robinson et al., 2008),
and evidence that acquisition of evidential markings that indicate source
of knowledge is related to source monitoring and theory of mind devel-
opment (Papafragou and Li, 2001) (Papafragou et al., 2007) (Ozturk and
Papafragou, 2016; Ünal and Papafragou, 2016). Finally, we manipulated
the emotional valence (positive or negative) of the main character's final
state. Using patterns of activity in independently identified regions of
interest (ROIs), we tested whether we could classify the same items ac-
cording to these distinct features differentially across regions. Specif-
ically, we hypothesized that epistemic features of others' beliefs
(justification, source modality) would be represented in bilateral TPJ,
and that motivational features (valence) would be represented in
(D/M/V) MPFC. In order to test for the specificity of effects to these a
priori hypothesized regions, we conducted the same tests in other ToM
regions as well as in a set of control regions involved in language
processing.

2. Materials and methods

2.1. Experiment summary

Participants in the scanner listened to short narratives in which a
protagonist came to hold a belief based on evidence that varied in
justification, modality, directness, and valence (Fig. 1). After each story,
participants judged whether the protagonist felt happy or sad; half of all
stories ended happily. Stories appeared in all four epistemic conditions
across participants, crossing modality and justification, and were
matched in both low-level (e.g. length, reading ease, lexical frequency)
and high-level features (e.g. background and conclusion content); each
participant heard every story in one of the four conditions. This design
maximizes variance within condition (each stimulus was a different
story) while minimizing differences across conditions (matched stories
varied only in the words describing inputs to the character's belief for-
mation, described in the evidence section of the stimulus). Thus, suc-
cessful classification, which requires training and testing on distinct
stories (rather than repeated instances of the same story), provides evi-
dence for an abstract representation of the manipulated dimension that
generalizes across heterogeneous inputs. In a second experiment, we
conduct a conceptual replication in order to test the robustness of rep-
resentations of the justification of others' beliefs, in the context of
moral judgments.

2.2. Participants

All participants were native English speakers, had normal or



Fig. 1. Example stimuli from Exp. 1. In the fMRI task, participants listened to audio recordings of 40 target stories and 10 physical control stories. Stories lasted from 22 to 36 s. Individual
participants saw each target story in one of the four epistemic conditions, forming a matched and counterbalanced design; every target story occurred in all four conditions across
participants. After each story, participants heard the question “Happy or sad?” and indicated whether the main character in the story felt happy or sad using a button press (left/right).
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corrected-to-normal hearing and vision, and gave written informed
consent in accordance with the requirements of Institutional Review
Board at MIT. All participants were recruited from campus and the sur-
rounding Boston area and received payment for participation.

In Exp. 1, 20 right-handed adults participated (11 women; mean
age ± SD, 28.5 years ± 6.8). In Exp. 2, 20 right-handed adults (12
women; 21.25 ± 2.6) participated. The participant samples for Exp. 1 and
Exp. 2 were independent. Two participants in Exp. 1 were dropped for
excessive head motion, and one failed to complete the experiment,
leaving 17 in all analyses; no participants were excluded from Exp. 2.

2.3. Stimuli

2.3.1. Experiment 1
Participants were scanned while listening to audio recordings of 40

stories about a character's beliefs and emotions and 10 physical control
stories (Fig. 1 and Supplementary Materials (SM)). Story texts are
available for download (http://saxelab.mit.edu/stimuli.php). The stories
were digitally recorded by 11 female speakers at a sampling rate of
44,100 to produce 32-bit digital sound files. Each story was presented in
4 sections: (i) background information (identical across conditions, 16 s,
32 words ± 2.5), (ii) evidence (6–14 s; 25 words ± 2.3), (iii) conclusion
(2–4 s, 10 words ± 2.4), and (iv) participant response (6 s). The four
epistemic conditions were distinguished only in the “evidence” section.

In Seeing Strong Evidence (SS) stories, the protagonist makes an
inference based on clear visual access to reliable and unambiguous evi-
dence (e.g. a woman infers that a wolf is outside, based on seeing large,
fresh paw-prints, in good light). In Seeing Weak Evidence (SW) stories,
the protagonist makes the same inference based on indistinct and unre-
liable visual evidence (e.g. the woman sees some old markings in the dirt
in dim light). In Hearing First-person Evidence (HF) stories, the pro-
tagonist draws her conclusion based on strong aural evidence (e.g. the
woman hears a distinctive growl on a quiet afternoon). Finally, in
Hearsay Evidence (HS) stories, the protagonist comes to her conclusion
based on someone else's report of evidence (e.g. the woman is told by her
friend that there are large, fresh paw prints in the dirt). Individual par-
ticipants heard each target story in only one of the four epistemic con-
ditions, forming a matched and counterbalanced design; every target
story occurred in all four conditions across participants.

In half of the stories in each condition, the protagonist felt aNegative
emotion based on her inference (e.g. that there is wolf outside), whereas
in the other half of the stories, the protagonist would feel a Positive
emotion based on her inference (e.g. that she is getting a puppy for her
birthday, Fig. 1). After each story, participants heard a recording of a
male speaker ask “Happy or sad?” Participants indicated whether the
main character in the story felt happy or sad, using a button press (left/
right). During the response period, a screen with a happy (left) and sad
(right) face appeared, to remind participants which button to press. Re-
action time was measured from the onset of the question “Happy or sad?”
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Stories were presented in a pseudorandom order, where condition
order was counterbalanced across runs and subjects, and no condition
was immediately repeated. During the stories, one of eight task-irrelevant
abstract color-patterns was randomly displayed. Rest blocks of 12 s
occurred four times in each run. The total experiment of five runs
(6.2 min each; 10 stories per run) lasted 31 min.

2.3.2. Key comparisons
Independent behavioral ratings (see SM and Table S1) verified that

the intended manipulations were effective: Seeing Strong Evidence
stories were rated as having higher justification than Seeing Weak Evi-
dence (t(77.2) ¼ 7.15, p < 0.001, d ¼ 1.6). In contrast, there was no
difference in the belief justification between hearing first-person (HF)
and hearsay (HS, t(77.2) ¼ 0.94, p ¼ 0.35), nor between seeing and
hearing (t(149.4) ¼ �1.05, p ¼ 0.29). Note that there was a reliable
difference in the justification between the Seeing Strong-Evidence stories
and the First-person Hearing stories (t(78)¼ 2.14, p¼ 0.04, d¼ 0.48). In
general sighted people treat visual evidence as stronger than auditory
evidence. As a result, this comparison is confounded between modality
and justification.

We therefore tested three features of epistemic evaluation of beliefs:
Justification contrasts seeing strong evidence (SS) and seeing weak
evidence (SW), holding fixed the modality, directness, valence, and
conclusion. Modality contrasts whether the protagonist received the
information visually (SS þ SW) or aurally (HF þ HS), holding fixed the
conclusion and the justification of the belief. Directness contrasts
whether the protagonist heard the evidence him/herself (HF), vs. was
told about the evidence (HS), holding fixed the evidence and the
conclusion, justification and source modality. We hypothesized that
these epistemic features might be represented in bilateral TPJ.

The Valence of the protagonist's emotion was the difference between
the positive and negative stories. The protagonists of positive stories
were rated as significantly happier than the protagonists of negative
stories (Positive: 6.13 ± 0.06; Negative: 1.69 ± 0.03; t(110.5) ¼ 63.35,
p < 0.001, d ¼ 10.02 (large)). By contrast, the four epistemic conditions
were matched on emotional valence (F(3,156) ¼ 0.03, p ¼ 0.99), and
across all stories and conditions (SS, SW, HF, HS), positive stories and
negative stories had similar evidence justification (Positive: 4.4 ± 0.1;
Negative 4.7 ± 0.1; t(110.5) ¼ 1.6, p ¼ 0.11). We hypothesized that
valence would be represented in MPFC. Previous work has provided
evidence that dorsal parts of MPFC represent valence (Peelen et al., 2010;
Skerry and Saxe, 2014, 2015), and that affective theory of mind
reasoning depends on VMPFC (Amodio and Frith, 2006; Etkin et al.,
2011; Hynes et al., 2006; Sebastian et al., 2012; Shamay-Tsoory et al.,
2006; Shamay-Tsoory and Aharon-Peretz, 2007; Leopold et al., 2011;
Shamay-Tsoory, 2011); thus, we tested for representations of valence in
dorsal, middle, and ventral medial prefrontal cortex.

http://saxelab.mit.edu/stimuli.php
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2.3.3. Experiment 2: replication and generalization
To test the replicability of the evidence justification results of

Experiment 1, and their robustness to variation in the stimulus and task,
we analyzed an existing dataset that contained a conceptually similar
manipulation. Young et al. (2010) asked participants to make moral
judgments of a protagonist's actions (e.g. “Grace puts the powder in her
friend's coffee”) based on justified or unjustified beliefs (Young et al.,
2010). In this study, participants read 54 stories in the scanner. Each
story was broken into three sections: (1) the background, which set the
stage (identical across conditions; 6 s), (2) the protagonist's belief
(identical across conditions), and the justification for the belief (weak,
strong, or unspecified; 4 s), and (3) the conclusion, which detailed the
protagonist's action and the final outcome (bad: the protagonist's action
led to physical injury or death of another character; 1/3 stories; or
neutral: no harm to anyone; 2/3 of the stories; 6 s; Fig. 3). Only stories
describing strong or weak evidence are analyzed here, collapsing across
outcome. All stories are available for download (http://saxelab.mit.edu/
stimuli.php) and in SM.

Belief justification was manipulated by describing the belief as based
on strong evidence (e.g. “Grace thinks the white powder is sugar, because
the container is labeled ‘sugar”) or based on insufficient evidence (e.g.
Grace thinks the white powder is sugar, though there's no label on the
container.”). The original publication of these data examined the
magnitude of the response in theory of mind brain regions (Young et al.,
2010). In the current analysis, we tested whether the pattern of response
in any ToM region (particularly the RTPJ and RMSTS, given the results of
Exp. 1) distinguished between others' beliefs that were based on strong
vs. insufficient evidence (Fig. 3).

Each story appeared once in each condition, forming a matched and
counterbalanced design. Individual participants saw each story in only
one of the 9 conditions; every story occurred in all conditions, across
participants. Stories were presented in a pseudorandom order; conditions
were counterbalanced across runs and participants, and 14 s rest blocks
were interleaved between stories. After each story, participants respon-
ded to the question “How morally blameworthy is [the agent] for [per-
forming the action]?” on a 4-point scale (1-not at all, 4-very much), using
a button press. Stories were presented in white, 24-point font on a black
background. Nine stories were presented in each 5.1-min run, with six
runs total (30.6 min).

2.3.4. Theory of mind localizer
Participants in both experiments were also scanned on a localizer task

designed for identifying theory of mind brain regions in individual par-
ticipants. Participants read verbal narratives about thoughts (‘Belief’), vs.
about physical representations like photographs and maps (‘Photo’
(Dodell-Feder et al., 2011); see SM).
2.4. Acquisition and preprocessing

FMRI data were collected in a 3 T Siemens scanner at the Athinoula A.
Martinos Imaging Center at the McGovern Institute for Brain Research at
MIT, using a 32-channel phased array head coil (Exp. 1) and a 12-channel
head coil (Exp. 2).

We collected a high-resolution (1 mm isotropic) T-1 weighted
MPRAGE anatomical scan, followed by functional images acquired with a
gradient-echo EPI sequence sensitive to blood-oxygen-level-dependent
(BOLD) contrast (repetition time (TR) ¼ 2s, echo time (TE) ¼ 40 ms,
flip angle ¼ 90�, voxel size 3 � 3 � 3mm, matrix 64 � 64, 26 near-axial
slices). Slices were aligned with the anterior/posterior commissure and
provided whole-brain coverage (excluding the cerebellum). For steady
state magnetization, the first 4 s of each run were excluded.

Data were motion corrected, realigned, normalized onto a common
brain space (rigid rotation and translation, MNI template, SPM8),
spatially smoothed using a Gaussian filter (FWHM 5 mm) and subjected
to a high-pass filter (128 Hz). See SM for motion and artifact analysis.
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2.5. fMRI analysis

2.5.1. Defining individual subject ROIs for theory of mind
Individual ROIs were picked using the data generated by the ToM

localizer (Dodell-Feder et al., 2011). Individually-tailored functional re-
gions of interest (ROIs) were defined in right and left temporo-parietal
junction (R/LTPJ), right middle superior and bilateral anterior tempo-
ral sulcus (RMSTS, R/LASTS), medial precuneus (PC), and dorsal-, mid-
dle-, and ventro-medial prefrontal cortex (D/M/VMPFC) (9 regions
total). ROIs were defined based on in the first-level contrast image, as all
voxels within a 9 mm radius of the peak voxel that passed threshold
(Belief > Photo, p < 0.001 uncorrected, k > 20; SM and Fig. S1).

2.5.2. Defining language ROIs
In order to test for regional specificity of our results to ToM regions,

we tested our four key comparisons (justification, modality, directness,
and valence) in 14 language regions, which span much of language-
responsive cortex. These group-level ROIs were based on the parcels
from Fedorenko et al. (2010), which defined functional regions in which
activity in a sentence > non-words contrast was found most consistently
across subjects (Fedorenko et al., 2010) (see SM and Fig. S1). Language
regions are a relevant set of control regions, because they are likely
recruited to process the aural verbal stimuli, and represent abstract fea-
tures and semantic content of the stories.

2.5.3. Within-ROI multivariate analysis (MVPA)
We conducted within-ROI multi-voxel pattern analysis (MVPA). To

reduce the dimensionality of the number of features (voxels) relative to
the number of items, feature selection was used to find voxels with each
ROI most likely to contain task-related signal (Pereira et al., 2009). Using
data from all runs of the main experiment, an unbiased task vs. rest
ANOVA identified up to 100 most active voxels in each ROI, in which the
response to all conditions differed most reliably from rest (ranked by
F-statistic) (Mitchell et al., 2004). Because all conditions are modeled
together, this selection criterion did not bias the outcome of classification
between conditions (“peeking”) and allowed us to use the same voxels
across cross-validation folds (see SM for further details).

Response patterns in each ROI were classified using a linear support
vector machine (SVM), which plausibly models the readout of neural
populations (Butts et al., 2007; DiCarlo and Cox, 2007; Naselaris et al.,
2011). For each trial, we calculated the average BOLD signal in each
voxel in the ROI (high-pass filtered (within run; 128 Hz), linearly de-
trended (across runs), z-scored per voxel; Fig. S2a), measured during
the “evidence” portion of the story. For Exp 1, the “evidence” began 17s
into the story, and lasted 4–16s; in Exp 2, the “evidence” began 7s into
the story and lasted 4s; in both cases, responses were averaged starting 4s
later to account for hemodynamic lag. This procedure resulted in a
temporally-compressed neural “pattern” for each trial: a vector of BOLD
responses across voxels in the ROI (Fig. S2b).

For each classification, we used all trials in all-but-one runs to train
the model, and all trials in the left-out run to test classification (Table S2).
This procedure was iterated. We then averaged across folds to produce
one classification rate, per ROI and per participant. Statistics were
calculated across participants: a region could reliably distinguish a
feature if binary classification accuracies were significantly above
chance, across participants (0.50; one-sample, one-tailed t-test; see SM
and Table S2 for further details).

2.5.4. Correcting for multiple comparisons and determining specificity of
effects

In Exp. 1, we initially tested for significant decoding of source mo-
dality and justification in bilateral TPJ (two regions/tests, Bonferroni
corrected α-level ¼ 0.025), and valence in D/M/VMPFC (three region/
tests, α-level ¼ 0.017). In Exp. 2, we tested the replicability and
robustness of the justification results in Exp. 1. In both experiments, we
subsequently tested the remaining ToM regions and the 14 language
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regions, in order to determine specificity of the results to the a priori
hypothesized ROIs.

Finally, in both experiments, we tested whether there was any reli-
able difference between regions in the information they contained. In
each subject, all 23 regions were ranked by their classification accuracy
for each dimension; we used a Wilcoxon Rank Sum test to determine
whether the regions that showed successful classification reliably con-
tained more information than other regions. This measure allowed us to
compare across regions without the explosion of multiple comparisons
created by pairwise tests among 23 regions for 4 dimensions, and is more
tolerant of missing data (i.e. participants in whom an ROI was not
identified) than a within-subject analysis of variance.

2.5.5. Item-wise classification: testing for continuous representations
In addition to looking at subject-wise classification accuracies, we

also calculated item-wise classification. For each item, classification of
justification is defined as the proportion of times an itemwas classified as
“strong evidence”, across participants; modality classification is defined
as the proportion of times an item was classified as visual evidence. We
asked whether ROIs represent continuous information about the
distinction (e.g. very strong evidence vs. somewhat ambiguous evi-
dence), and whether item-wise classification scores (e.g. proportion of
times an item was classified as “strong”) were predicted by item-wise
behavioral ratings (1–7 scale of “how good is the evidence”?). See SM
for further details.

3. Results

3.1. fMRI task: classification results

Do regions implicated in reasoning about other minds contain
explicit, abstract representations of features of others' belief formation
process? We test if bilateral TPJ represents belief justification and source
modality, and if MPFC represents valence. To test for specificity of sig-
nificant results, we test the remaining ToM regions and 14 control re-
gions implicated in language processing (Fedorenko et al., 2010).

3.1.1. Justification
The key open question that this study addresses is whether bilateral

TPJ tracks information directly related to epistemic reasoning. From the
pattern of neural responses across voxels in individually defined ROIs, we
successfully classified stories describing justified versus unjustified be-
liefs in RTPJ (accuracy ¼ 0.56(0.03), t(16) ¼ 2.4, p < 0.014;
α-level ¼ 0.025 for two regions/tests).

Next, we test for the specificity of this result by testing the remaining
ToM regions and the 14 language regions. We find a significant effect in
RMSTS (0.58(0.04), t(16) ¼ 2.2, p ¼ 0.023, Fig. 2b), and no significant
results in the other regions tested (all p > 0.1). Comparing across all
regions, there was reliably more information about justification in the
neural patterns in RTPJ (Wilcoxon Sum Rank test, W ¼ 107, p ¼ 0.023)
and RMSTS (W ¼ 97, p ¼ 0.019) than in the other 21 regions.

Is this information categorical or continuous? Independent behavioral
ratings, collected via Amazon's Mechanical Turk (Buhrmester et al.,
2011) (see SM) of the justification of the belief showed that single items
varied in the extent to which the evidence was considered strong or
weak. Behavioral ratings predicted how likely each individual story was
to be classified as depicting strong evidence in both RTPJ (r(78) ¼ 0.29,
p ¼ 0.009) and RMSTS (r(78) ¼ 0.28, p ¼ 0.01, Fig. 2e). Continuous
behavioral ratings explained significant variance in the item-wise neural
classification accuracies, even after accounting for the binary condition
labels (RTPJ: Condition: β ¼ 0.16 ± 0.1, t ¼ 1.7, p ¼ 0.11; Behavioral
rating: β ¼ 0.22 ± 0.1, t ¼ 2.3, p ¼ 0.038; RMSTS: Condition:
β ¼ 0.2 ± 0.08, t ¼ 2.2, p ¼ 0.035; Behavioral rating: β ¼ 0.17 ± 0.08,
t ¼ 2.1, p ¼ 0.048).
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3.1.2. Modality
Replicating a prior study (Koster-Hale et al., 2014), we found distinct

patterns of response to beliefs based on visual vs. auditory evidence in
LTPJ (0.59(0.03), t(16) ¼ 2.8, p ¼ 0.007); and a marginal effect in RTPJ
(accuracy ¼ 0.55(0.03), t(16) ¼ 2.1, p ¼ 0.027) after correcting for 2
regions/tests (α-level ¼ 0.025, Fig. 2b); and in no other region (all
p > 0.15). Across all 23 regions, more information about modality was
consistently found in LTPJ (Wilcoxon Sum Rank test, W ¼ 124,
p ¼ 0.002) and RTPJ (W ¼ 90, p ¼ 0.047).

Are representations of evidence modality in RTPJ and LTPJ inde-
pendent? Classification scores for modality in RTPJ and LTPJ were
correlated across items (r(157)¼ 0.21, p¼ 0.009) and across participants
(r(15) ¼ 0.51, p ¼ 0.04), suggesting related representations of modality
across regions. However, lexical concreteness scores (which were overall
higher for visual evidence than auditory evidence) predicted item-wise
classification accuracy for modality in LTPJ (r(158) ¼ 0.18, p ¼ 0.02)
but not RTPJ (r(158) ¼ �0.004, p ¼ 0.96; difference: t ¼ 1.9, p ¼ 0.03),
suggesting that classification in LTPJ may be partially driven by a rep-
resentation of the concreteness of the evidence in the story, rather than
the sensory modality alone.

3.1.3. Justification vs. modality in RTPJ
The evidence here suggests that RTPJ represents both belief justifi-

cation and evidence modality (Koster-Hale et al., 2014). These two di-
mensions are often correlated in real-world situations (visual evidence
tends to be perceived as stronger), although they were manipulated
orthogonally in these stimuli. One possibility is that the RTPJ encodes
only one of these two dimensions, and the other dimension is distin-
guished by proxy. We tested this hypothesis in three ways. First, we asked
whether an item that was rated as more justified was more likely to be
classified as visual based on the pattern of response in the RTPJ. We found
no such correlation, either in all 160 items, or within the 80 visual items
alone (all items: r(158) ¼ 0.04, p ¼ 0.6; visual items: r(78) ¼ -0.01,
p ¼ 0.9). Second, there was no correlation, across participants, between
the classification accuracies in RTPJ for modality vs. justification
(r(15) ¼ �0.22, p ¼ 0.4). Finally, behavioral ratings of evidence quality
were better predictors of neural classification of justification than of
modality (difference of correlations, z(78) ¼ 1.93, p ¼ 0.049). Together,
these results suggest that RTPJ contains independent and orthogonal
representations of the justification and source modality of others' beliefs.

3.1.4. Directness
Do any regions distinguish between others' beliefs based on first-

person auditory evidence vs. hearsay (another person's report), inde-
pendent of justification and modality? We could not classify stories into
these categories in any region (all p > 0.14), and no region showed
reliably more information about directness than any other region
(all p > 0.13).

3.1.5. Valence
The pattern of neural response in the VMPFC reliably classified stories

resulting in positive vs. negative emotions (accuracy ¼ 0.57(0.04),
t(12) ¼ 1.9, p ¼ 0.038). This effect is marginal when correcting for
multiple comparisons (α ¼ 0.017, for 3 regions (D/M/VMPFC)/tests),
but is consistent with previous studies. Information about valence was
more present in VMPFC than in the other 22 regions (W¼ 77, p¼ 0.013).
Again, we asked whether these representations were categorical or
continuous. Independent behavioral ratings of the valence of the pro-
tagonist's emotion in each story predicted how likely that story was be to
be classified as positive valence by the VMPFC (r(158)¼ 0.21, p¼ 0.009,
Fig. 2e), even after accounting for the binary condition labels (Condition:
β ¼ 0.13 ± 0.07, t ¼ 2.2, p ¼ 0.047; Behavioral rating: β ¼ 0.15 ± 0.07,
t ¼ 2.2, p ¼ 0.02).

3.1.6. Functional dissociation: RTPJ vs. VMPFC
Does RTPJ contain reliably more information about evidence quality



Fig. 2. (a) ROIs (b) Classification accuracy in Exp. 1 forMental: mental vs. physical stories (see SM),Modality: visual vs. auditory modality (S,H), Justification: strong vs. weak evidence
(SS, SW), Directness: first person vs. hearsay (HF, HS), and Valence: positive vs. negative emotion, (c) Classification accuracy in the replication study for Justification: strong vs. weak
evidence. (d) LTPJ: density plot of classification accuracies by condition. Modality is not a continuous feature and thus not compared to behavior; rather we observe striking similarity in
the classification accuracy in LTPJ between seeing conditions (red: SS and SW) and hearing conditions (purple: HF HS). (e) RTPJ, RSTS, VMPFC: Correlation between item-wise clas-
sification scores and behavioral ratings. In RTPJ and RMSTS there were significant correlations between justification classification scores (how many times an item was scored as “strong”,
across participants) and behavioral judgments (how good is the character's evidence?). In VMPFC, there was a significant correlation between valence classification score (how many times
an item was scores as “positive”) and behavioral judgments (how happy does the character feel?). (*p < 0.05).
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than VMPFC, and does VMPFC contain reliably more information about
valence than RTPJ? Converging with the results from the Wilcoxon sum
tests, item-wise valence scores were significantly more related to classi-
fication accuracies in the VMPFC than in the RTPJ (difference of
14
correlations, t ¼ 2.4, p ¼ 0.02). Conversely, item-wise classification by
justification was significantly more related to ratings of justification in
RTPJ than in VMPFC (difference t ¼ 2.15, p ¼ 0.02), confirming that
these regions contain information about distinct aspects of the stories.
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3.1.7. Shared representations across regions
When two regions could successfully classify the same feature, we

tested whether those representations were independent or redundant.
Patterns of activation in both RMSTS and RTPJ discriminated the justi-
fication of belief, but there was no correlation between the classification
accuracies in RTPJ and RMSTS when collapsed by item (r(78) ¼ 0.18,
p ¼ 0.12) or by subject (r(15) ¼ -0.19, p ¼ 0.48). The classification ac-
curacy of RTPJ and RMSTS made independent contributions towards
explaining the behavioral ratings (RTPJ: β ¼ 1.0 ± 0.4, t ¼ 2.3, p ¼ 0.02;
RMSTS: β ¼ 1.1 ± 0.5, t ¼ 2.2, p ¼ 0.03), suggesting that RTPJ and
RMSTS encode different aspects of belief justification. By contrast, both
RTPJ and LTPJ could classify modality of evidence, and these regions'
classification scores were correlated across items (r(157) ¼ 0.21,
p ¼ 0.009) and across participants (r(15) ¼ 0.51, p ¼ 0.04), suggesting
that RTPJ and LTPJ contain related representations of source modality.

3.1.8. Summary of results in language control regions
None of the control regions showed successful classification of any of

the tested distinctions (all T < 1.4, p > 0.05 uncorrected), consistent with
the hypothesis that this information is specific to ToM regions.

3.1.9. Effects of age and gender
None of the reported results differ by age (all rs < 0.51, all ps > 0.07)

or gender (all ts < 1.4, all ps > 0.19).

3.2. Replication: generalization to another manipulation of justification

A key novel result of Exp. 1 is the evidence of a representation of the
justification of others' beliefs in RTPJ and RMSTS. To test the replicability
of this result, and its robustness to variation in the stimulus and task, we
reanalyzed published data that contained a similar manipulation (Young
et al., 2010). In this conceptual replication, the “bad evidence” consisted
of missing or misleading evidence (Fig. 3), in contrast to Exp. 1, which
manipulated the protagonist's perceptual access and the extent to which
the evidence unambiguously supported the conclusion. In addition, the
stimulus manipulation in Exp. 2 affected 2–4 words in each story, so that
the difference between conditions was a minimal pair (e.g. “Because the
container is labeled sugar” vs. “Although there is no label on the
container”, see Fig. 3). Thus, we can use these data to ask not only
whether we find a reliable difference in neural patterns for justified and
unjustified beliefs in a new set of participants, with new stimuli and a
new task, but also whether this representation extends to a distinct and
minimal manipulation of justification.

As in Exp. 1, justified versus unjustified beliefs were successfully
classified based on the neural pattern of response in RTPJ
(accuracy ¼ 0.54(0.02), t(17) ¼ 1.8, p < 0.05, Fig. 2c), but not RMSTS
(accuracy ¼ 0.47(0.03), t(15) ¼ -0.99, p ¼ 0.83; Wilcoxon signed-rank
W ¼ 6, p ¼ 0.70; because the distribution of the RMSTS differed
Fig. 3. Example stimuli from Exp. 2. Here, beliefs were unjustified not because of obscured and
After each story, participants responded to the question “How morally blameworthy is [the ag
button press.
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significantly from a normal distribution (Lilliefors test for normality,
K¼ 0.26, criterion¼ 0.21, p¼ 0.004), we report results from the relevant
parametric and non-parametric tests). RMSTS carried reliably less in-
formation about justification than RTPJ (Wilcoxon signed-rank
W ¼ 86.5, p ¼ 0.04). Moreover, RMSTS carried significantly less infor-
mation than it did in Exp. 1 (Wilcoxon signed-rank W ¼ 75.5,
p-value ¼ 0.03).

In order to test for the specificity of this effect in the RTPJ, we
additionally tested the other ToM ROIs and the 14 control ROIs: no other
ROI showed this distinction (all classification accuracies <51%, p>0.3).

4. Discussion

Humans have a rich and detailed model of other minds, which in-
cludes understanding both what actions people will take given their
beliefs and desires, and what beliefs people will form given their envi-
ronment. We find evidence that, mirroring the processes observed in
sensory systems (DiCarlo et al., 2012; Kamitani and Tong, 2005; Kourtzi,
2001; Lafer-Sousa and Conway, 2013; Tanaka, 1993), social stimuli are
represented in distinct and distributed formats across the human brain.
Specifically, we observed a spatial and functional dissociation epistemic
features of another person's beliefs, represented in RTPJ, and the valence
of their beliefs, represented in VMPFC. These results converge with one
hypothesized architecture of theory of mind, which distinguishes be-
tween epistemic and motivational components of social reasoning
(Schlaffke et al., 2014; Schnell et al., 2011) (Amodio and Frith, 2006;
Etkin et al., 2011; Hynes et al., 2006; Sebastian et al., 2012; Shamay-
Tsoory et al., 2006; Shamay-Tsoory and Aharon-Peretz, 2007), is com-
plementary with the division in computational models between belief
formation and value-based planning (Baker et al., 2017, 2009; Bello,
2012; Jara-Ettinger et al., 2012), and provides an overarching framework
for interpreting past neuroimaging results.

The key contribution of the current study is to characterize the fea-
tures and representations of epistemic ToM, and dissociate those repre-
sentations from representations of motivation and valence. Prior studies
have reported that MPFC contains information about the valence of
another person's experience (Chavez and Heatherton, 2015; Chib et al.,
2009; Chikazoe et al., 2014; Kable and Glimcher, 2007; Peelen et al.,
2010; Skerry and Saxe, 2014; Winecoff et al., 2013); we replicate that
finding here. We extend this work with evidence that neural populations
in VMPFC represent valence as a continuous dimension, ranging from
positive to negative, and correlated with behavioral ratings.

Critically, in Exp. 1, we find that these motivational representations
are distinct from epistemic representations of the same stimuli. We tested
for two types of epistemic representation: the modality of another per-
son's evidence (i.e. whether the other person saw or heard evidence
(Koster-Hale et al., 2014)), and the justification of their belief (whether
the evidence was strong or weak support for the conclusion they made).
ambiguous evidence as in Exp. 1, but because of missing or misleading evidence (see SM).
ent] for [performing the action]?” on a 4-point scale (1-not at all, 4-very much), using a
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Both of these distinctions could be decoded in RTPJ but not MPFC.
RTPJ (in Exp. 1 and 2) and RMSTS (in Exp. 1 only) contain infor-

mation about the justification of a person's belief. These patterns reflect
spontaneous evaluation of the character's belief formation process; par-
ticipants' explicit task focused attention on other aspects of the stories
(emotion in Exp. 1, moral blame in Exp. 2). In both regions, belief
justification was represented as a continuous, not a binary, feature and
was correlated with independent behavioral ratings of each story.
Intriguingly, the RTPJ and RMSTS contain at least partially distinct and
complementary information about belief justification, hinting at a finer
grain of distinctions between mental states. An alternative possibility is
that the classification of justification in RMSTS in Exp. 1 was spurious,
and therefore did not replicate in Exp. 2.

People often conflate modality with justification: visual evidence may
seem to be stronger evidence than perceptions in other modalities
(“seeing is believing”, “my eyes don't deceive me”). By contrast, modality
and justification involved distinct neural representations: LTPJ contained
information only about modality, and within RTPJ, the representations
of modality and justification were independent. The distinction between
modality and justification within RTPJ in particular suggests that a
multidimensional feature space of epistemic evaluation may be imple-
mented in the RTPJ.

Similarly, directness of evidence and justification are also often
conflated, especially when the source of hearsay evidence is perceived to
be unreliable (Kovera et al., 1991;Miene et al., 1993; Olson, 2003). In the
current experiment, the first-person and hearsay conditions were
matched on evidence justification, suggesting that the informants in the
hearsay condition were overall perceived to be reliable. This design
enabled us to test for representations of directness per se, controlling for
justification; we did not find evidence that ToM brain regions represent
the directness of evidence. Future work that manipulates justification
and directness orthogonally (e.g. in a 2 � 2 design), or manipulates
different aspects of directness (e.g. is the informant reliable? What is the
relationship between the protagonist and the informant?) will be infor-
mative for understanding the neural representation of direct evidence
versus hearsay.

The representational dimensions revealed by these analyses are
highly abstract, generalized representations of a shared latent feature
across otherwise unique and heterogeneous verbal stories. All classifi-
cation analyses involved training and testing on unique stimuli (not
repeated instances of the same stimulus). Because each story occurred in
all conditions (across subjects), differences between conditions were
minimal, limited to the words describing the character's belief formation.
Those diagnostic words were variable within a condition, across stories
(e.g. two examples of unjustified beliefs: “Bella tried to peer through a crack
in the door. In the very dim light, Bella squinted to see his eyes close.”; “The
classroom was large and crowded. Across the room, Dillon was pointing at
something.”). The manipulation in Exp. 2 was even more minimal:
changes of just a few words in each story (e.g. justified: “because it is
marked” vs. unjustified: “although it is not marked”). Thus, across different
participants, stimuli, and tasks, patterns of neural response spontane-
ously distinguish at least one abstract feature of the character's belief
formation process: justification of evidence. Taken together, these studies
provide evidence of an abstract representation of others' belief formation
process complementary to reasoning about motivation and values.

The contrast between epistemic features represented in TPJ and
motivational features represented in VMPFC (Exp. 1) helps to clarify
another puzzle in the literature, regarding the representation of acci-
dental harm. One set of experiments described a protagonist as causing
harm knowingly versus unknowingly (e.g. “you absolutely knew/had no
idea about your cousin's allergy when you served him the peanuts). In-
formation about this distinction was found in RTPJ, and predicted par-
ticipants' moral judgments of the protagonist (Koster-Hale et al., 2013).
By contrast, in a second experiment, when an action was depicted as on
purpose versus by accident (e.g. deliberately pushing someone versus
tripping and falling against them), activation was different in the VMPFC.
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Developmental change in VMPFC was associated with developmental
reductions in blame for the accidents (Decety et al., 2012). These two sets
of results are compatible when viewed in light of the proposed repre-
sentational architecture for ToM: RTPJ contains information about what
the protagonist knew or should have known, before acting intentionally
(i.e. an aspect of their belief formation); whereas the VMPFC is sensitive
to whether the action was consistent with the protagonist's goals (i.e. an
aspect of their value-based planning).

One prominent use of MVPA has been to find information about a
stimulus or task outside of the regions that show peak or selective re-
sponses (O'toole et al., 2005). By contrast, we found that both motiva-
tional and epistemic features of the stimuli were represented in brain
regions associated with ToM, but not in brain regions associated with
language processing. These results converge with multiple prior reports
that information relevant to distinctions within ToM appears to be
preferentially represented in the same regions that show a robust
response to ToM overall (Koster-Hale et al., 2014, 2013; Skerry and Saxe,
2015, 2014; Tamir et al., 2016). Mounting recent evidence suggests a
distinct partition of the TPJ is recruited for mental state reasoning; given
the use of a validated functional localizer, these results pertain to this
partition (Igelstro m et al., 2016; Mars et al., 2012). This convergence
between MVPA and evoked responses suggests that knowledge of other
mindsmay be implemented in representational spaces distinct from other
aspects of conceptual and linguistic processing.

However, null results in MVPA must always be interpreted with
caution (e.g. due to limits in spatial scale (Dubois et al., 2015)). Because
each fMRI voxel contains thousands of neurons, MVPA can only detect
relatively low-frequency spatial patterns of neural responses, and many
distinct neural populations are intermingled beyond this resolution
(Freeman et al., 2011; Op de Beeck, 2010). Furthermore, evoking rich
and specific mental states requires relatively long and complex stimuli.
We classified average neural responses to a whole sentence, presented in
the context of a longer narrative, and thus combined across many
cognitive processes. As a result, classification results must be interpreted
as a lower bound on the information available in each region (Krie-
geskorte and Kievit, 2013).

Moreover, finding evidence of a series of distinctions is merely a small
step into explaining the full variance of these regions. Discovering the
complete representational spaces that structure our knowledge of other
minds poses a major challenge. Observers' inferences about others'
mental states are flexible, generative, and fine-grained. Any individual
experiment can only test an extremely sparse sample of possible hy-
pothesized representations. For example, in addition to the features
described above, prior research has shown that the RTPJ contains in-
formation about a character's history of cooperation (Behrens et al.,
2008) and likely future action (Carter et al., 2012).

As one approach to that challenge, two recent studies have used data-
driven feature-discovery methods to characterize representational spaces
in the ToM network. Tamir and colleagues found a single dimension that
captures substantial variance in the pattern of local responses in all re-
gions of the ToM network to 60 distinct states (attributed to an unnamed
target) (Tamir et al., 2016). The authors call this dimension “social
impact”: it ranges from highly social, high arousal states like playfulness,
lust, dominance, and embarrassment at one end, to solitary, low-arousal
states like exhaustion, laziness, self-pity, and relaxation at the other. Two
additional (and largely orthogonal) dimensions also explained variance
in the pattern of responses in the ToM network: valence (satisfaction and
inspiration, versus disarray and distrust), and “rationality” (planning and
decision, versus ecstasy and disgust). Though Tamir and colleagues did
not test whether these distinct representational spaces within ToM are
associated with distinct neural loci, this study provides converging evi-
dence that valence and rationality are distinct aspects of our intuitive
concepts of other minds.

Using a similar approach, Skerry and Saxe found that patterns of
response in the ToM network, including RTPJ and MPFC, could classify
200 unique short verbal narratives into classes described by twenty
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distinct emotion labels (e.g. furious, jealous, grateful, proud) (Skerry and
Saxe, 2015). The similarity space of neural patterns in this network was
best captured by abstract features of the situation, and was not reducible
to more primitive affective dimensions such as valence and arousal.
Features that explained significant variance in the neural response
included whether the event influenced the protagonist's significant re-
lationships, would be repeated in the future, affected the protagonist's
life in the long run, and/or was caused by the protagonist or by other
people. These features are related, but not reducible, to Tamir and col-
league's concept of social impact. In addition, Skerry and Saxe found
suggestive evidence of partially complementary (i.e. non-redundant)
information represented in different regions within the network. As in
Tamir et al., however, the stories in Skerry and Saxe did not manipulate
the character's belief formation process, and so could not test distinctions
within the epistemic component of ToM. Thus, future work should
replicate and extend the dissociation we find evidence for here, between
representations of epistemic features in TPJ and valence in VMPFC.

One challenge of the data-driven approach is that it is unlikely that
mental state attributions are best described as simply a list of features;
rather, they are likely representations with internal structure (Baker
et al., 2017, 2009; Davidson, 1963), understood in terms of their
computational role within a coherent explanatory theory (Carey, 2009;
Gopnik and Wellman, 1994). Any representational similarity analysis
operationalizes these representations as a “bag of features”, more similar
to the way concepts have been defined in prototype theory (i.e. graded
categorization based on feature similarity to some category prototype or
centroid (Rosch, 1973)). This representation lacks compositionality and
cannot naturally encode logical or causal structure (Kording, 2014; Tervo
et al., 2016). Even a simple propositional attitude (e.g. The captain be-
lieves that he has found the sea monster) is composed of an agent (the
captain), an attitude (believes) and a propositional content (he has found
the sea monster), and is causally connected to many other specific mental
states (e.g. wanting to find the sea monster, feeling excited, deciding to
set off in pursuit). Relatedly, inferences about beliefs necessarily depend
on a rich body of world knowledge (e.g. sea monsters are dangerous but
rare), so neural populations specific to theory of mindmust interface with
general-purpose semantic systems. It will be a challenge for future
research to characterize the neural implementation of this highly com-
plex system, and a combination of data-driven and hypothesis-driven
approaches will be necessary to tackle this problem. We believe that,
by providing evidence of functionally and spatially distinct components
of theory of mind, this paper provides a crucial step in that process, and
we look forward to future progress.

5. Conclusion

A cornerstone of the human capacity for social cognition is the ability
to reason about the unobservable causal structure underlying other's
actions: the person's intentions, beliefs, and goals. This study uses
advanced functional neuroimaging techniques to probe neural compu-
tations underlying social reasoning. Building on existing computational
models, we find that brain regions recruited during mental state
reasoning contain neural signatures of epistemic and motivational com-
ponents of theory of mind: the justification and source modality of the
belief, and the valence of the resulting emotion. These representations
reliably track behavior, and are encoded by distinct neural populations.
By delineating these neural representations, we begin to probe the inner
workings of mental state inference, and its distribution across the
human brain.
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