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Social Origins of Cortical Face Areas
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Highlights
Adult primates have highly stereotyped
cortical regions for perceiving faces.

New fMRI data from infant primates
show early preferential responses to
faces with an organization similar to
adult face areas, but do not answer
the question of how this organization
arises.

Recent neuroimaging data also indi-
cate that medial prefrontal cortex
(mPFC) responds to positive, contin-
Recently acquired fMRI data from human and macaque infants provide novel
insights into the origins of cortical networks specialized for perceiving faces.
Data from both species converge: cortical regions responding preferentially to
faces are present and spatially organized early in infancy, although fully
selective face areas emerge much later. What explains the earliest cortical
responses to faces? We review two proposed mechanisms: proto-organization
for simple shapes in visual cortex, and an innate subcortical schematic face
template. In addition, we propose a third mechanism: infants choose to look at
faces to engage in positively valenced, contingent social interactions. Activity
in medial prefrontal cortex during social interactions may, directly or indirectly,
guide the organization of cortical face areas.
gent social interaction beginning in
early infancy.

Given that faces have a key role in early
social interaction, biased connectivity
with mPFC may have a role in scaffold-
ing the development of face selective
regions.
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Functional Neuroimaging of Infants
Humans spend a lot of time looking at other human faces. Seeing faces helps the perceiver
engage appropriately in social interactions, because faces contain information about others’
identities, attention, and intentions. After decades of experience, human adults are thus
expert perceivers of human faces. Correspondingly, there are multiple regions of the human
brain that are face selective (see Glossary), highly active while viewing faces compared with
viewing images of anything else [1–3]. Similar regions exist in macaques [4–6] and
chimpanzees (e.g., [7]). How do adult brains come to have this functional organization?
How do innate architectural biases interact with experience of the visual world to create an
adult face-expert brain?

An obvious way to address this question would be to directly study the brain in infancy, to see
when and how functionally selective regions emerge. However, studying infant brains is
challenging because infants are less compliant and attentive than adults. In 2017, the first
studies were published that used fMRI to measure cortical responses to faces in infants: one
study of human infants [8] and two studies of rhesus macaque infants [9,10]. These new
results provide exciting, converging descriptions of the earliest stages of the functional
development of face regions in human and macaque cortex. Here, we describe neural
mechanisms that contribute to the origins of cortical faces areas in these infants. In particular,
we argue that faces are not just salient visual patterns during infancy, but are perceived in the
context of infant-directed social interaction. Thus, preferences for social interactions,
possibly represented in medial prefrontal cortex (mPFC), likely guide the organization of
cortical face areas.

Cortical Face Responses in Adulthood and Infancy
In humans (Homo sapiens), face selective regions are located in ventral occipital and temporal
cortex [e.g., the occipital face area (OFA) and fusiform face area (FFA)] and the superior
temporal sulcus(STS). In rhesus macaques (Macaca mulatta), five face selective regions are
found in the STS [4–6]. In both species, the locations of these regions are stable within
individuals and stereotyped across individuals. Face selective regions are also reliably
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Glossary
Electroencephalography (EEG): a
method to record electrical activity
from the scalp as a measure of
neural activity. This method has high
temporal and low spatial resolution.
Face preference: a neuron, or
neural population, responding more
to faces than some (but not all) other
categories of visual images (e.g.,
environmental scenes).
Face selective: a neuron, or neural
population, responding more to
faces than any other visual category.
Face selective cortical regions are
often identified by contrasting
responses to faces and objects.
fMRI: measures blood oxygenated
level-dependent (BOLD) signals to
track blood flow in the brain in
response to neural activity.
Functional near-infrared
spectroscopy (fNIRS): similar to
fMRI, fNIRS measures hemodynamic
responses to neural activity, but it
does so by tracking changes in the
absorption of near-infrared light as
the light travels through the brain
from an emitter placed on the
participant’s scalp to a nearby
detector.
Medial prefrontal cortex (mPFC):
the medial surface of the prefrontal
cortex anterior to the cingulate
sulcus (the medial parts of
Broadman’s areas 9, 10, and 11).
Functions associated with regions in
mPFC include social attention, self-
referential processing, reward
evaluation, and affective theory of
mind.
Retinotopy: the mapping of visual
responses across the cortical
surface, preserving the spatial
relations of the sensory receptors of
the retina.
Social interaction: infants are
sensitive to many different cues of an
attentive caregiver, including high-
pitched prosody, stroking or rocking,
and direct gaze. One critical cue is
likely contingency (e.g., alternation or
imitation) between the infant and the
partner in vocalizations, gestures, or
expressions.
Subcortical template: a rough
visual feature map that resides in a
subcortical structure and allows rapid
recognition of an important stimulus
class.
Superior temporal sulcus (STS):
the sulcus between the middle and
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Figure 1. Face Preferring Regions
across Human Development. fMRI
reveals a similar location for regions that
preferentially respond to faces (hot colors)
when contrasted with scenes (cool col-
ors), across development (A). Selective
responses to faces (hot colors) when con-
trasted with objects (cool colors) emerge
later during development, with the size
and selectivity of these regions increasing
through adolescence (B). Peak clusters
are displayed on exemplar subjects for
illustrative purposes. Data from 5- and
10-year-old children were provided by
Michael Cohen and Nancy Kanwisher;
infant and adult data were reported in [8].
positioned within a broader functional organization, spatially interleaved with scene selective
and color selective regions in ventral temporal cortex [11,12]. Disrupting function in face
selective regions produces specific face recognition deficits in both species [13,14]. In humans,
stimulating FFA can even produce an illusory perception of a face [15]. Thus, activity in face
selective regions appears to play a causal and necessary role in adult face perception.

Are these regions present in infancy? Direct fMRI experiments in infants revealed that cortical
regions that would be face selective in adulthood show a face preference in the earliest scans
acquired. Dynamic movies of faces elicited greater activity in both ventral temporal and STS
regions of 4- to 6-month-old human infants, compared with dynamic movies of natural
environments [8] (Figure 1). Similarly, at 30 days of age, macaque infants, which mature more
quickly than human infants [16], displayed greater activation to dynamic movies of monkeys
than to movies of environmental scenes in precisely the cortical regions that went on to develop
face selectivity in the ensuing months [9]. Thus, the spatial organization of later face selective
responses is already present in very young macaque and human infants.

These fMRI findings of early preferential responses to faces converge with extensive evidence
from other neuroimaging methods, such as functional near infrared spectroscopy(fNIRS)
and electroencephalography(EEG). In human infants 3–9 months of age, these studies have
observed preferential responses [i.e., increased oxygenated blood flow or differential event-
related potential (ERP) components] to faces relative to other categories over temporo-occipital
regions and STS [17–22]. These methods have also provided evidence of other signatures of
face processing in infant cortex, including individuation and differential responses to upright
versus inverted faces [20–22], although the specific ERP components indicating face sensitivity
and the age at which they are observed vary across experiments (Box 1).

At the same time, the fMRI data suggest that both fusiform and STS regions are less selective
for faces in infancy than in adulthood. In both human infants [8] and rhesus macaque infants [9],
responses to objects (e.g., chairs or toys) were just as high as responses to faces throughout
the relevant regions of cortex. Longitudinal data from rhesus macaque infants indicate that face
selectivity (i.e., low responses to all other objects in face preferring regions) emerges only after
extensive visual experience with faces. In three macaques scanned multiple times during their
first year, cortical regions first responded more to monkey faces than to object control photos
2 Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy
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superior temporal gyri. In humans,
regions of STS show preferential
responses to faces, voices, biological
motion, and other social stimuli. In
macaques, multiple regions of the
STS respond to faces. In the current
context, we mostly refer to the
region of STS responding
preferentially to faces in both
species.

Box 1. Conflicting Evidence of Face Selectivity in Human Infants

fMRI studies of macaque and human infants find early preferential responses to faces relative to environmental scenes in
future face selective cortical areas, but slow development of face selectivity [8,9]. In particular, responses to objects
were as high as responses to faces in both ventral temporal and STS regions. Selective responses to faces in typical
face areas appeared later, after months (in macaques) or years (in humans) of experience [10,23,24]. While these fMRI
findings are consistent with one another, they are not consistent with evidence for face versus object responses in
young human infants from studies using EEG and fNIRS [17–22]. What might explain the conflicting evidence from
different neuroimaging modalities?

One possibility is that hemodynamic (i.e., fMRI) measures are insufficiently sensitive to early cortical response properties.
In neonatal macaques, electrophysiological measures detect stimulus-evoked activity in visual cortex that is not
apparent in hemodynamic or deoxyglucose measurements [90–92]. Thus, electrophysiological (i.e., EEG) measure-
ments may be more sensitive than hemodynamic measurements to true early face selective responses in infant cortex.

Alternatively, responses to faces in infant EEG may not in fact be face selective. Many EEG studies investigate the face-
inversion effect (e.g., [93–95]), but differential responses to upright and inverted faces might reflect general perceptual
learning rather than face selective processing [96]. Differences in evoked responses to faces versus objects in young
infants are inconsistent across studies (e.g., [17,95,96]). The distinct processing of faces versus objects detected by the
steady-state visually evoked potential (SSVEP) method [19] may reflect online categorization of face images rather than
persistent selectivity [97]. Thus, it remains possible that neither fMRI nor EEG find evidence for face selective responses
in human infants.

Reconciling contradictory findings from fMRI and fNIRS is more difficult. Both methods measure the same hemody-
namic signals and have employed similar dynamic videos of faces and objects. Yet, multiple fNIRS studies found face
selective responses in temporal cortex of human infants between 0 and 6 months of age [20,22,47,98]. One possible
explanation for the discrepancy is that standard fMRI viewing conditions (i.e., a small mirror-mediated view of a
projection screen) dampen face responses compared with more natural fNIRS viewing conditions. Another possibility is
that fNIRS experiments have not adequately ruled out potential confounding differences in vascular blood flow when
viewing socially engaging faces [99]. Recent advances for both methods should allow researchers to tease apart these
factors [100,101] and hopefully arrive at converging conclusions about when face selectivity emerges in cortical face
areas.
when the monkeys were 200 days old [9]. The emergence of selectivity may be even later in
humans: face selective responses in the fusiform gyrus are measured around age 5 years
(comparable to �450 days for macaques) and continue to increase in size throughout adoles-
cence [23,24] (Figure 1; but see Box 1 for conflicting evidence from other neuroimaging
methods). This late development of face selective regions requires visual experience with
faces, at least in macaques. Unlike human infants, it was possible to raise infant macaques
without any visual experience of faces; human researchers fed and played with the infants while
wearing welder’s masks. In three infant macaques raised without visual experience of faces,
face selective cortical regions were not observed at the typical age of 200 days, or even at
400 days old, the oldest age tested [10].

One question that remains is how either the early preferential or later selective cortical
responses to faces are related to infants’ behavioral face-processing abilities. Since human
and macaque infants show many behavioral signatures of face perception, including average
face preferences [25,26], recognition of specific individuals [27–30] and better recognition of
upright than inverted faces [31,32], a face selective cortical area may not be required for many
aspects of face perception (see Outstanding Questions).

In sum, direct neuroimaging of infants suggests that face selective areas in cortex emerge from
two sources. Early in infancy, systematic regions of cortex are already biased to respond
preferentially to images of faces. Learning from visual experience builds on this pre-existing
scaffold by increasing selectivity and reducing responses to other visual categories, thus
canalizing a species-typical profile of face selective cortical regions. Here, we ask: what is
Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy 3
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Figure 2. Three Mechanisms Guiding the Development of Cortical Face Areas. (A) Extrastriate cortex is organized according to overlapping low-level feature
dimensions (e.g., the eccentricity and shape dimensions represented orthogonally along the x and y axes) [33]. Preferential responses to faces may arise in the part of
extrastriate cortex (‘Face Area’, outlined) that combines their particular low-level properties (e.g., frequent foveation and curvilinearity). (B) An innate subcortical template
may facilitate the detection of face-like images. The template could influence face areas either by directing infants’ visual attention or through direct connectivity (shown
here). Biased connectivity from this template could potentiate responses to faces in specific regions of extrastriate cortex (i.e., the ‘Face Area’ box in this panel). (C)
Infants’ preferential interest in social interaction, and the brain systems that support such interactions, may also influence face area development either by directing
infants’ visual attention or through direct connectivity (shown here). In particular, biased connectivity from medial prefrontal cortex (mPFC) regions that respond to
prosocial interaction could potentiate responses to faces in specific regions of extrastriate cortex (i.e., the ‘Face Area’ box in this panel).
the nature and mechanism of the early bias? What prepares certain patches of cortex to
develop into ‘face areas’? At least three distinct mechanisms may contribute (Figure 2).

‘Proto-organization’ of Simple Visual Features
First, the organization of face areas may arise from the fact that extrastriate visual cortex is
‘proto-organized’: neurons respond to simple visual statistics, and are spatially grouped by
preferences for these features [33,34]. At birth, no patch of high-level cortex need be
specifically pre-disposed to respond to faces, or any other behaviorally meaningful category.
Instead, higher order visual regions initially inherit the visual features that drive early visual
regions. These include preferential responses to parts of the visual field (i.e., retinotopic
organization of responses to stimulation in the fovea or periphery) as well as responses to visual
features, such as high- versus low-spatial frequencies, and square versus curved edges
(i.e., rectilinearity versus curvilinearity). In extrastriate cortex, responses to these different visual
4 Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy



TICS 1818 No. of Pages 12
features may self-organize into a map, such that a preference for each combination of features
occurs independently [35]. Thus, innately, neural responses are spatially organized along low-
level dimensions of visual image statistics.

Critically, the statistics of infants’ actual visual experiences are highly nonrandom. For example,
human and macaque mothers frequently position their infants face-to-face [36–39]. Thus,
human and macaque infants have extensive experience with face images on their fovea at a
typical distance. Such images co-activate neurons with preferences for foveal input, curvilin-
earity, or low spatial frequency. Thus, patches of cortex in which responses to all of these low-
level features overlap will be frequently co-activated. Repeated co-activation, over months and
years of experience, could then lead these neurons to learn selective responses to faces.

Strengths of this hypothesis include that it relies only on well-documented mechanisms of
cortical organization, and established patterns of connectivity from early to higher order visual
regions. We agree that patterning of low-level visual statistics is likely one part of the early
scaffold of face areas in macaques and in humans. However, this mechanism is unlikely to be
the whole story. For example, if infants’ experience of low-level visual statistics fully explains
their subsequent cortical organization, any class of stimuli could become preferred by ‘face
areas’, if it was curvilinear and frequently foveated. This hypothesis can be tested. The three
infant macaques with no visual experience of faces fixated hands as much as typical macaque
infants fixate faces [10]. Responses to hands, in extrastriate cortex, were bigger and more
robust in these macaque infants, but the hand responses were not in foveal-biased regions
(unlike typical face areas) and did not simply take over typical face patches [10]. Thus, frequent
fixation of hands (and no experience of faces) alone is insufficient to convert face areas into
hand areas. (However, other differences in the shape of faces and hands, such as spatial
frequency, could explain the failure of face areas to become hand areas.) Another weakness of
this hypothesis is that human infants' early cortical responses to faces are stronger in the right
hemisphere [19,22,40], although the ‘proto-organization’ of visual cortex by simple features is
bilaterally symmetric [33].

More critically missing is an explanation of infants’ intrinsic motivation to look at faces. Infants do
not only receive passive visual experiences; rather, they actively prefer to look at face-like
images within hours of birth, and possibly before [41–43]. One-day-old human infants prefer to
look at schematic faces with black dots placed on white ovals, rather than white dots placed on
black ovals, in the eye region [42]. What drives these early preferences, and what role do they
have in cortical specialization?

Innate Subcortical Face Template
In addition to proto-organization in cortex, there may be a second neural system underlying
macaque and human infants’ early detection of, and preference for, faces [42,44–48]. Infants’
sensitivity to a specific set of visual features (curvilinear, symmetric, enclosed, lower frequency
in the bottom half, etc.) could reflect an innate, subcortical ‘face template’ that directs an
infant’s attention to face-like shapes [45,46]. This proposal is modeled on the detailed example
of imprinting in domestic chickens. Chicks are born with two innate mechanisms that jointly
operate to ensure imprinting on the mother hen, in typical environments. First, the optic tectum
contains a rough visual template of a hen (a bird head on a body) that directs the chicks’
attention to objects that match the template. Second, a mechanism in the mesopallium forms a
strong and irreversible memory of, and attachment to, any object to which the chick attends,
regardless of its match to the template [46,49].
Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy 5
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The primate visual system may have an analogous mechanism for guiding early social attention.
Primates may have a subcortical region in the superior colliculum, pallidum, and/or amygdala
that contains an innate template of a face, and that directs neonates’ attention to matching
stimuli. A subcortical template could guide the early and stereotypical spatial organization of
face preferring responses in cortex either directly or indirectly [45,50]. If the influence is indirect
(as it is in the chick model), the innate subcortical template would explain infants’ looking to
faces, and then cortical regions could learn face preferences based only on the visual statistics
of experience. Alternatively, if the influence is direct, the subcortical template may have biased
direct connectivity to parts of extrastriate cortex, potentiating responses to images that match
the innate template. This direct input could facilitate and accelerate acquisition of cortical face
selectivity (Figure 2B).

These alternatives could be tested by using fMRI in human or macaque infants. For example, do
subcortical responses to faces predict neonatal orienting to faces? Is there biased connectivity
between face preferring subcortical regions and parts of extrastriate cortex early in infancy? To
date, however, direct neural evidence for a subcortical face template is lacking in primates. For
example, in infant macaques, no preferential responses to faces were observed in the pallidum
or amygdala [9], although negative results in fMRI of infants must be interpreted with caution
[33].

So far, we have described two visual mechanisms that could support human and macaque
infants’ earliest neural responses to faces. First, the earliest cortical face preferences may
reflect low-level visual statistics; infants’ frequent experience foveating the curvilinear features
of faces then causes the category-specific cortical specialization for faces per se [9,10].
Second, face images may match an innate, subcortical visual template that attracts and
guides infants’ attention, and shapes (directly or indirectly) the response of cortical face areas
[51]. These mechanisms are not incompatible and may operate in concert. Still, both mecha-
nisms operate over faces as a pattern of bottom-up visual input.

Strikingly, however, bottom-up visual input does not appear to be necessary to establish the
typical spatial layout of preferential face responses in the human visual system. In humans who
are born blind, ‘face areas’ show preferential responses to facial sounds, including laughing,
chewing, blowing a kiss, and whistling [52,53]. The spatial pattern of responses to facial versus
environmental sounds in blind humans can be used to identify responses to movies of faces
versus scenes in sighted humans. These patterns were present in humans born without eyes,
whose fusiform and STS regions were deprived of visual input from conception. Thus, the
pattern of bottom-up visual input cannot be the only source of face-preferential organization in
human cortex.

Instead, a key factor driving infants’ early behavioral and cortical responses to faces is the
functional role of faces in meaningful social interactions.

Social Factors Drive Early Looking Towards Faces
Neonatal looking to faces is likely driven by a perceptual template, but quickly after birth both
macaque and human infants’ attention to faces is not explained solely by the presence or
absence of a schematic face. Within weeks, infants choose to look at faces in order to engage in
positively valenced, contingent social interactions.

Within the first few weeks of life, both macaque and human infants’ attention to schematic faces
declines [48,54] as they develop a preference for dynamic rather than static faces. If a
6 Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy
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responsive social partner suddenly adopts a static and unresponsive expression (an experi-
mental paradigm referred to as the ‘still face’), human infants look away from the partner’s face
and express less positive affect [55–57]. Young human infants even disengage from dynamic,
speaking faces when contingency between the partner’s face and their own behavior is
disrupted (i.e., by switching from a live face-to-face interaction to a prerecorded video of
the same person [58]). Macaque and human infants who consistently experience less respon-
sive face-to-face interactions are subsequently less likely to spontaneously look at new faces
[59,60]. Thus, within the first few months of life, macaque and human infants’ attention to faces
is dependent upon immediate and accumulated evidence that the face represents a responsive
social partner.

Human infants’ attention to faces is also driven by multimodal cues to social value. From the first
weeks of life, infants prefer infant-directed speech to adult-directed speech [61,62]. By 5
months of age, human infants preferentially attend to faces previously associated with infant-
directed speech [63] or other kinds of prosocial behavior, such as helping and comforting
[64,65]. At the same age, human infants also orient preferentially to another cue of a social
interactions: their own name [66]. Social touch can also enhance human infants’ attention to
faces [67].

Thus, infants recognize faces not only as specific patterns of low-level input, but also as social
interaction partners. Infants’ social experiences with faces affect later social behavior. When
human researchers raised infant macaques with the same amount of physical handling but
differential exposure to mutual gaze and lip-smacking (a macaque affiliation gesture), affiliative
face-to-face interaction promoted the infants’ later social interest and approach [59]. Similar
differences in early human infants’ exposure to contingent interaction with faces are related to
later engagement in contingent social behavior, as well as infants’ attachment [68,69].

Indirect Influence of Social Interaction on Face Area Development
The motivation to engage in contingent social interactions could influence the development of
cortical face areas indirectly. As described above, neonatal orienting to face images may be
driven by a subcortical face template, but infants soon shift attention particularly to the faces of
social partners. Thus, both a subcortical template (in neonates) and social preferences
(throughout infancy) could promote foveating faces, and maintain high levels of correlated
responses in the proto-organized regions of extrastriate cortex.

What are the candidate neural regions or systems for representing social value that might direct
infants’ attention to the faces of social partners? One possibility is mPFC, particularly regions
associated with recognition of social value and self-relevant social interactions in adults
[70–75]. Previously, researchers thought that, in human infants, the prefrontal cortex lacked
well-organized function, but more recent evidence suggests that mPFC is engaged by valued
social interactions even in young human infants [76]. In the fMRI data, human infants showed
clear mPFC activation at both the group and individual level while viewing dynamic faces [8]
(see Box 2 for a comparison with infant macaques). fNIRS studies observed responses in infant
mPFC to many cues of infant-directed social interactions, including faces, infant-directed
speech, and infants’ own names [77–79], even in neonatal infants [78]. mPFC responses to
faces and voices are strongest when presented with cues of positive social attention toward the
infant, including direct gaze and smiling [77,80,81]; when social partners respond contingently
by following the infants’ own gaze shifts [82]; and in response to a familiar and highly valued
social partner (i.e., the infant’s mother, [81,83,84]).
Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy 7
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Box 2. mPFC Responses in Infants: Species Similarity or Difference?

In human infants, viewing faces evoked activity in mPFC (Figure I) [8]. However, an mPFC response to faces was not
observed in the fMRI study of infant macaques [9]. What could account for this difference?

First, the results may reveal a true species difference: human infants could have a distinct area of the mPFC for
recognizing and responding to social interactions that is not present in macaque infants. Human social cognition is more
sophisticated than that of other primates [102,103]. Also, the connectivity fingerprint of mPFC is distinct in human and
macaque brains, consistent with divergent functional roles [104]. On the other hand, in adult macaques, face areas do
show functional connectivity to medial prefrontal regions associated with social interaction [105,106], and macaque
infants appear to value and depend on social interaction during development [28,36,59].

Second, the results might derive from the geometry of the custom-built MRI coils used for infant scanning. The human
infant 32-channel array included four surface coils positioned over the forehead to directly measure mPFC [107],
whereas the monkey infant four-channel array was positioned over the back of the head to prioritize visual cortex [9].

Third, mPFC activation may reflect the specific stimuli used in each study. In human infants (and adults), mPFC
responses are observed for dynamic faces, including cues of attention (direct gaze, communicative mouth movements,
and play gestures) and positive valence (smiling, children’s faces, and infant-directed prosody [8,21,81,83]). By
contrast, macaque infants were presented still photographs of unfamiliar adult monkey faces [9,10]. Only the youngest
monkeys (30 days) saw movies; these movies showed unfamiliar adults interacting with each other and did not present
cues of positive interaction towards the infant observer. Thus, it is possible that mPFC responses in macaque infants
would be observed in experiments presenting more ecologically valid dynamic stimuli.

In sum, it remains unclear whether the social function of mPFC is similar, or dissimilar, in human and macaque infant
development. Addressing this question will be important for understanding whether an mPFC-based mechanism for
recognizing social value could have a similar role in the development of cortical face networks in both species.

Figure I. Medial Prefrontal Cortex (mPFC) Response to Dynamic Faces in Human Infants.
The functional role of mPFC in recognizing valued social interactions may promote the
development of cortical face areas by sustaining attention on faces throughout infancy and
early childhood. This mechanism could operate alongside both a subcortical face-template and
proto-organized visual maps, yet makes specific, testable predictions. First, reliable mPFC
responses to social interaction with conspecifics should begin very early in infancy, perhaps as
early as the first cortical responses to faces (see Outstanding Questions). Second, it should be
possible to measure infants’ mPFC responses during social interactions and predict the infants’
subsequent attention to the faces involved.
8 Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy
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Outstanding Questions
How plastic is the function of cortical
face areas when developing in different
environments? On the one hand, face
deprivation prevents cortical face spe-
cialization and fails to encourage face
regions to adopt responses to other
frequently foveated categories, includ-
ing hands. On the other, there is some
evidence that face areas respond to
social and emotional sounds in blind
individuals. In the absence of face
exposure, could other visual stimuli
colonize face areas if they had a similar
role in contingent social interaction?
Would typical face areas develop given
visual but not social experience with
faces?

Is mPFC responsible for human
infants’ earliest responses to social
interaction? Tracts to mPFC myelinate
slowly in humans, and are immature
during early infancy. Also, most evi-
dence for mPFC responses to social
cues comes from infants 4 months of
age or older, but infants’ responses to
social interaction and to specific social
partners begin to emerge weeks or
months earlier. If mPFC activity does
not underlie social preferences in 2–3-
month-olds, what other brain regions
are involved?

How do preferential or selective corti-
cal responses to faces relate to behav-
ioral measures of face processing? Do
early preferential responses play a role
in learning to recognize specific indi-
viduals? Does subsequent specializa-
tion either support or result from
distinctive signatures of face process-
ing, such as inversion sensitivity and
holistic recognition? How do preferen-
tial or selective responses relate to the
ability to extract socially relevant cues,
such as emotion or gaze direction,
from faces?

What are the species-specific differen-
ces between humans and macaques
that support the higher level social
cognitive capacities of humans? The
behavior and neural data reviewed
here from human and macaque infer-
ences contain mostly homologous
patterns. Yet, human social cognitive
capacities surpass those of macaques
by the time humans are toddlers. What
neural mechanisms support and drive
these differences?
Direct Influence of mPFC on Face Area Development?
The functional role of faces in social interactions might even be reflected in the innate
architecture of the infant brain. That is, the proto-organization of infant visual areas may reflect
not only bottom-up connectivity (mapping visual features and simple shapes), but also top-
down connectivity. For example, regions of fusiform gyrus and STS may have pre-existing
connectivity with mPFC regions that respond to positively valenced, contingent social inter-
actions. Face areas would develop at the confluence of both sources of input. Top-down
signals of social value from nonvisual sources, such as contingency [58], affiliative touch [67], or
infant-directed speech [61,62], would strengthen responses to faces when they co-occur, as
when parents hold infants face-to-face while stroking or talking to them.

Connectivity between face areas and mPFC does exist in adults, measured functionally in
humans [85] and macaques [86], and by direct anatomical tracing in macaques [87]. Within
human adults, the location of the FFA can be predicted by connectivity to plausible ‘higher
order’ social regions [88]. Top-down influences on responses to socially relevant stimuli could
also explain some aspects of face area organization. First, laterally biased top-down connec-
tivity could account for evidence of an early right lateralized bias for face processing [19,40],
much as pre-existing connectivity to higher order language regions explains the left lateralized
development of the visual word form area [89]. Second, top-down activation during social
interaction could explain how facial sounds can evoke activity in ‘face areas’ even in congeni-
tally blind adults [52,53].

Our hypothesis has implications for the spatially organized face preference observed in infant
fMRI experiments described above. If innate extrastriate cortex is proto-organized only by
simple visual features, then face preferences in infant cortex reflect only the combination of
visual features in the stimulus. By contrast, if biased connectivity to mPFC also shapes the
location of early face responses, then face-preference responses in infant cortex incorporate
the social function of faces ontogenetically and even phylogenetically.

This direct version of mPFC influence on face area organization makes some additional
predictions. First, effective connectivity from mPFC to developing face areas should be directly
observable in infancy. Second, this account makes strong predictions about the kind of
experience necessary for face area development. Infants that experience salient face images
in the environment but separated from social interaction (e.g., still photographs associated with
juice) should develop atypical face areas. Conversely, if social partners were associated with
some other contingently responsive visual display, even one with different visual features, face
areas could become specialized for processing this novel category instead.

Concluding Remarks
In sum, new fMRI evidence collected in human and macaque infants has raised a new puzzle:
what accounts for the early spatial organization of species-typical face networks, reflected in
preferential face responses during the first months of life, long before complete face selectivity?
We propose that three mechanisms could work together during the development of cortical
face areas: (i) bottom-up statistical learning of biased input; (ii) a subcortical template for
detecting face shapes; and (iii) mPFC responses to the social value associated with contingent
face-to-face interaction. Thus, the process of cortical face specialization interacts with early
systems for recognizing and responding to signals of social value. Future research can test this
hypothesis by investigating the structural and functional interactions between regions involved
in perceiving faces and social interaction in human and macaque infants.
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