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Abstract

Observers attribute emotions to others relying on multiple cues, in-

cluding facial expressions and information about the situation. Recent

research has used Bayesian models to study how these cues are integrated.

Existing studies have used a variety of tasks to probe emotion inferences,

but limited attention has been devoted to the possibility that different

decision processes might be involved depending on the task. If this is the

case, understanding emotion representations might require understanding

the decision processes through which they give rise to judgments. This

article 1) shows that the different tasks that have been used in the liter-

ature yield very different results, 2) proposes an account of the decision

processes involved that explains the differences, and 3) tests novel predic-

tions of this account. The results offer new insights into how emotions

are represented, and more broadly demonstrate the importance of taking

decision processes into account in Bayesian models of cognition.

Keywords: emotions, Bayesian models, facial expressions, context, cue

integration, decision, compositionality
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Introduction

Understanding other people’s emotional experience is critical to guide social in-

teractions: it helps us to predict what they will do and how they will respond to

our actions. Facial expressions have been traditionally considered an important

source of information about other people’s emotions (Ekman & Oster, 1979).

Observers are relatively accurate at recognizing the emotions of posed facial

expressions (Calder et al., 2003). According to the theory of Basic Emotions

(Darwin & Prodger, 1998; Ekman, 1992; Adolphs, 2010), emotional experi-

ence is subdivided into a small number of emotion categories, associated with

the production of specific behaviors and expressions that evolved as adaptive

responses.

However, Carroll and Russell (1996) found that the same facial expressions

could be interpreted as reflecting different emotions depending on the context.

Aviezer, Trope, and Todorov (2012) have shown that participants were at chance

at judging the valence of expressions displaying extreme disappointment or ex-

treme happiness; when facial expressions were cropped and paired with a posi-

tive or negative valenced context, the context was found to dominate the emo-

tion inferences performed by participants (Aviezer et al., 2012). A growing

body of evidence points to the importance of context for emotion attribution

(Barrett, Mesquita, & Gendron, 2011; Hassin, Aviezer, & Bentin, 2013). There-

fore, studying how information about facial expressions and information about

context are integrated is key to understand emotion attribution.

Recent research has proposed to investigate emotion attribution within a

Bayesian framework (Ong, Zaki, & Goodman, 2015; Saxe & Houlihan, 2017;

Wu & Schulz, 2018). In this perspective, human inferences about the emotions

of others are modeled as a process that maps the observable inputs (the causal

context c and the observable facial expression x) onto a probability distribution
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over different emotions e following the rules of probabilistic Bayesian inference:

P (e|c,x). A Bayesian approach to emotion attribution offers several advantages:

it leads to formal models that generate quantitative predictions, and it models

not only the participants’ judgments, but also their uncertainty.

Testing Bayesian models of emotion attribution relies on measuring behav-

iorally the probabilistic relationships between cues and inferred emotions. Sev-

eral different tasks have been used to this end in the previous literature. For

example, Ong et al. (2015) asked how a character felt given a specific outcome

(Experiment 1) and how likely was an outcome given the emotion that ensued

(Experiment 2); Wu and Schulz (2018) asked, given an expected outcome, how

likely were different facial expressions.

If participants’ responses in all these tasks reflect the probabilities they at-

tribute to different emotions, using different tasks should yield the same re-

sponses, and the different tasks could be used interchangeably (we will say in

this case that emotion representations are ‘transparent’). By contrast, partici-

pants’ responses in the different tasks might be the outcome of distinct decision

processes operating on the same emotion representations, and thus different

tasks might yield different responses (we will say in this case that emotion rep-

resentations are ‘opaque’, Figure 1). In this case, only some, and possibly none

of these distributions might correspond to the probabilistic representations that

participants use for inference. Therefore, understanding emotion attribution re-

quires determining whether emotion representations are transparent or opaque,

and if they are opaque, it requires modeling jointly the decision processes and

the emotion representations to which they are applied.

This article is organized in two parts. In the first part, we investigated

whether probabilistic representations of emotions are transparent or opaque.

To do so, we asked participants to perform emotion inferences given facial ex-
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Figure 1: A) Transparent representations: judgments in different tasks directly
reflect the emotion probabilities; B) Opaque representations: judgments are
the outcome of decision processes applied to latent (non directly observable)
emotion probabilities.; C) Directed Acyclic Graph depicting the dependencies
between causal context, emotion, and expression.

pressions, contextual information, or both. We compared the distributions com-

puted from participants’ ratings using three types of tasks that have been used

in the emotion attribution literature. Given a set of cues (i.e. a facial expres-

sion or a context), the first type of task asked participants about the valence

of the emotion experienced by a character; the second provided a fixed emotion

valence, and asked how likely it was; the third asked participants to produce a

probability distribution over emotional valences.

Since we found that representations of emotions are opaque, in the second

part of the article we attempted to recover the participants’ internal represen-

tations of emotions. This is a challenging inverse problem. We introduced two

key criteria that must be satisfied by internal representations of emotions, and

we tested whether one of the three tasks commonly used in the field produces

judgments that satisfy the criteria.

The first criterion is based on cue integration. If Bayesian cue integration

well approximates the participants’ inferences, and behavioral ratings for a type
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of task yield distribution close to the probabilistic representations used for in-

ference, then Bayesian cue integration should well approximate the relationship

between the behavioral ratings as well. By contrast, if behavioral ratings are

the output of a decision process that transforms the internally represented prob-

abilities, that decision process could have led to information loss, and Bayesian

integration might no longer account for the relationship between the behavioral

ratings for context, emotions, and expressions.

The second criterion is based on ‘linking functions’. If the behavioral ratings

obtained in one task T0 are close to the internally represented probabilities, there

should exist for each other task Ti ‘linking functions’ such that the judgments

in the tasks Ti can be obtained as a function fi(T0) of the judgments in task

T0. These ‘linking functions’ are none other than the functions implemented by

the decision processes Ji for each of the other tasks (fi ≈ Ji). We started from

the task that best satisfied the first criterion, and formulated hypotheses on the

decision processes used to generate the ratings in the other tasks. Next, we

assessed whether these hypotheses could account for the observed data, and we

tested new predictions they generated with novel experiments and simulations.

Ultimately, the two strategies converged to indicate that distributional prob-

ability judgments are a good candidate to approximate participants’ internal

probabilistic representations of emotions.

Method

Testing the opacity of emotion representations

In the first part of the article, we tested whether representations of emotions

are transparent or opaque. To do so, we performed 3 experiments asking par-

ticipants to infer emotions from facial expressions, contextual information, or
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both. Since the paradigms used in the three experiments are similar, to avoid

repetitions we describe them jointly as follows.

Stimuli

All experiments including face images used eight face images chosen from the

stimuli of Aviezer et al. (2012): 2 of winning female tennis players, 2 of losing

female tennis players, 2 of winning male tennis players, and 2 of losing male

tennis players.

For experiments including context, participants were told that the target

character was a tennis player who had just won (in half of the trials, or lost,

in the remaining trials) an important point. For experiments including partial

context, participants were only told that the target character was a tennis player

at the end of a rally, but were not told whether the player had won or lost.

Participants

A total of 1755 participants were recruited through Mechanical Turk Market-

place. Thanks to Mechanical Turk we could collect large samples of participants,

leading to highly significant results in our statistical tests. For the valence rat-

ings and the pointwise probability ratings, participants completed a very brief

online task (approximately 3 minutes) and received $ 0.15 regardless of their

performance on the task. For the pointwise distributional ratings, participants

completed a brief online task (approximately 6 minutes) and received $ 0.80 re-

gardless of their performance on the task. Data were collected with the approval

of the MIT Institutional Review Board.

Before and after the ratings of interest, participants had to complete sim-

ple control tasks designed to ensure that they were reading and following the

instructions. The data from participants who failed the control tasks were dis-

carded prior to the analysis.

7



Experiment design

In each Mechanical Turk assignment, a participant completed a single trial of

interest for the analysis, to remove effects of prior judgments on later judgments.

Participants were shown a cue and were asked to perform a judgment about the

emotion of the target character given that cue.

We used five types of cues, and three types of tasks, for a total of 15 condi-

tions (Figure 2 B). Different participants took part to each different condition.

The cue was either an image of a target character’s facial expression, a sentence

providing contextual information about her/his situation, or both; the sentences

could provide either positive contextual information (‘the tennis player won a

point’), or negative contextual information (‘the tennis player lost a point’).

The task could request to provide a judgment of the valence of emotions, a

pointwise probability judgment, or a distributional probability judgment (tasks

are described in more detail below).

For judgments of the valence of emotions, participants were asked to report

how negative or positive was the character’s emotion by adjusting a slider from

0 (very negative) to 48 (very positive). The choice of a scale with 49 steps was

motivated by our aim to subdivide it into 7 equal bins of 7 steps.

For pointwise judgments of the probability of different emotion valences,

participants were shown a slider fixed on a specific value from 0 (very negative)

to 48 (very positive). Participants were provided with a second slider to judge

how likely the character was to experience the fixed emotional valence given the

available cue, going from very unlikely to very likely.

For distributional judgments of the probability of different emotion valences,

participants were asked how likely the target character was to experience emo-

tions going from negative (1) to neutral (4) to positive (7), using an adjustable

bar chart with 7 bars, with heights that automatically maintained a total sum
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of 100. Prior to the trial of interest, participants were familiarized with the ad-

justable bar graph using two example trials, in which they were asked to express

a given distribution over emotion valences. In the first practice trial, they were

asked to raise the bar for ‘neutral’ to 100. In the second practice trial, they

were asked to raise the bar for ‘very happy’ to 60, for ‘happy’ to 30, and for

‘somewhat happy’ to 10. Participants could proceed from the practice trial to

the trial of interest only if they completed the practice trials correctly within a

margin of error of 10 on each bar.

Data analysis

Judgments of emotion valence were binned into 7 bins of 7 values each, and

the proportion of participants whose judgments fell within each of the bins was

plotted.

Pointwise probability judgments were grouped based on the fixed emotional

valence that was presented. For each of the 7 emotional valence bins, the corre-

sponding probability judgments were averaged. The resulting distribution was

then normalized to sum to 1.

Distributional judgments were averaged yielding 7 mean probabilities, one

for each of the valence levels from 1 to 7. The significance of the difference

between the distributional probability judgments and the other distributions

was tested with a Hotelling T 2 test.

Testing different types of behavioral judgments as approx-

imations of internal representations

In the second part of the article, we aimed to tackle the challenges posed by

opaque representations, testing whether one of the three tasks typically used

in the field is a good candidate to reflect internal representations of emotions.
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In general, inverting the decision functions mapping from internal representa-

tions to behavioral judgments may not be possible. Such functions might be

non-injective (as in the case of MLE). However, we defined two criteria that be-

havioral judgments must satisfy if they do match closely internal representations

of emotions.

Criterion I: operations on representations

The first criterion is that if behavioral judgments match closely internal rep-

resentations, then it should be possible to find operations on the behavioral

judgments that correspond to the operations on representations. Let’s con-

sider representations α, β, γ, and an operation on representations f such that

γ = f(α, β). Let’s also consider a decision function J that maps the represen-

tations to behavioral judgments J(α), J(β), J(γ). We can try to find a function

g such that J(γ) = g(J(α), J(β)).

However, a function g that satisfies this requirement may not exist. The op-

eration f occurs before the decision process, therefore, it can use all the informa-

tion in α, β and γ. But since representations of emotions are opaque, J could

transform the internal representations in ways that lead to information loss.

Then, it might be no longer possible to find a g such that J(γ) = g(J(α), J(β)).

In the special case of a task such that the behavioral judgments match closely

internal representations (that is, J(α) ≈ α, J(β) ≈ β, J(γ) ≈ γ), it is guaran-

teed that we can also find a function g that satisfies the requirement. In fact,

if we choose g = f , this choice of g will satisfy the requirement. Summing up,

if behavioral judgments measured with a particular task match closely internal

representations, for each operation f on internal representations we should be

able to find a corresponding operation g on the behavioral judgments.
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Application of criterion I: cue integration

To apply criterion I, we need an operation over representations. Cue integration

is an operation over representations that has been studied in previous work: it

has been proposed that cue integration is Bayesian (Ong et al., 2015). Fur-

thermore, earlier research has taken advantage of the simplifying assumption

that there is a uniform prior on emotions (P (e) ≈ constant) to formulate the

following cue integration equation (the proof is reported in the Supplementary

Materials):

P (e|c,x) ∝ P (e|x)P (e|c). (1)

This assumption is helpful but needs to be used with caution, as it is quite

possible that the true distribution P (e) is not uniform. We can observe that

the equation gives us an operation that we can use to test criterion I in the case

of emotions. In fact, we can pose:

α = P (e|x) (2)

β = P (e|c) (3)

γ = P (e|c,x) (4)

and

γ ∝ f(α, β) = αβ. (5)

If behavioral ratings obtained with one task closely match the underlying

representations of emotion probabilities used for inference, we can expect the

behavioral ratings for emotions given context and expression to be related to

the behavioral ratings for emotions given context alone and to the behavioral

ratings for emotions given expression alone following Equation 6. That is, if a
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task T yields behavioral judgments JT such that JT (P (e|x)) ≈ P (e|x) (and so

on), the behavioral judgments need to satisfy the condition

JT (e|c,x) ∝ JT (e|x)JT (e|c). (6)

We tested to which extent different behavioral tasks produce ratings that

satisfy this condition (Figure 3).

Criterion II: linking functions

One limitation of criterion I is that, while behavioral judgments that match

internal representations need to satisfy it, it is not entirely guaranteed that

if a set of behavioral judgments satisfy the criterion, they must be identical

to the internal representations. For this reason, we aimed to strengthen the

conclusions obtained by applying criterion I using a second criterion, based on

linking functions.

Let’s consider a representation α, a task T0 that yield judgments close to the

internal representations (such that JT0
(α) ≈ α), and other n tasks T1, . . . , Tn.

Then, for each i = 1, . . . , n there must exist ‘linking functions’ f1, . . . , fn such

that JTi
(α) ≈ fi(JT0

(α)). In fact, if we choose fi = JTi
, since JT0

(α) ≈ α, we

have that fi(JT0
(α)) ≈ fi(α) = JTi

(α). In other word, criterion II states that if a

task T0 yields behavioral judgments that match closely internal representations,

the behavioral judgments in response to all other tasks must be computable

as functions of the behavioral judgments in task T0. We tested whether we

could find such linking functions between the task that best satisfied criterion I

(distributional probability judgments) and the other two tasks.
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Linking distributional probability judgments and judgments of emo-

tion valence

In addition to testing which behavioral ratings are best approximated by Bayesian

cue integration, we can test hypotheses about the decision processes that map

probabilistic representations onto observed judgments. When participants are

given a context or are shown a character’s facial expression, and they are asked

to produce a judgment about the character’s emotion (‘is Sue somewhat happy,

or very happy?’) as opposed to a judgment about probability (‘how likely is

it that Sue is very happy?’), they may be faced with the task of converting

the representation of a probability distribution (P (e|c) or P (e|x)) into a single

emotion value (J(e|c) or J(e|x)), i.e.

J(e|x) = f(P (e|x)). (7)

In particular cases, the assumption that the probability distribution P (e|x)

is equal to the distribution across multiple trials of the judgments of valence

J(e|x) might hold. For example, this is the case if the judgments are generated

sampling an emotion from the set of emotions with probability given by the dis-

tribution P (e|x). However, in general the distribution of judgments of valence

will be different from the distribution of probabilities. For example, a likely

mechanism to generate judgments of valence J(e|x) can be selecting the emo-

tional valence e with the highest probability (hencefort ‘maximum likelihood

estimator’ or ‘MLE’):

J(e|x) = arg max
e

(P (e|x)). (8)

It can be shown that choosing the emotion with the highest probability is the

optimal decision mechanism predicted by Decision Theory (Körding & Wolpert,

2006; Berger, 2013)), if the utility function is u(J(e|x)) = 1 if J(e|x) = ẽ
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and 0 otherwise. In this case the expected utility function is equal to the

probability distribution: E(u(J(e|x))) = P (e|x), and therefore the judgment

is arg maxe[E(u(J(e|x)))] = arg maxe[P (e|x)].

Judgments of emotion valence generated applying Maximum Likelihood (ML)

to a probability distribution P (e|x) will have reduced tails as compared to the

original probability distribution, and if the probability distribution is bimodal,

the non-dominant peak should be reduced in the distribution of judgments of

valence J(e|x).

Simulations. We generated simulated valence judgments applying ML to the

distributions obtained from the distributional probability task. For each bin

(1 to 7), a gamma distribution was used to model the distribution of values

across participants for that bin (the values are non-negative). We then used the

gamma distributions to simulate the distributional probability judgments of 100

subjects. For each simulated subject, we computed the valence judgment that

subject would produce applying ML to its distributional probability judgments.

The resulting judgments were analyzed as the valence judgments in the exper-

iments with real data, yielding a distribution of simulated valence judgments.

This procedure was iterated 100 times for each set of cues. In addition, we used

the same procedure to generate simulations using softmax (instead of ML). The

softmax decision function is widely used in the literature (Daw & Doya, 2006),

and might be explained by resource-limited sampling (Vul, Goodman, Griffiths,

& Tenenbaum, 2014).

Comparison between simulated and observed valence judgments. We

used the Hotelling T 2 test to compare the observed valence judgments and the

simulated valence judgments. In these simulations, each participant yields only

one value, instead of 7 values, therefore in the Hotelling T 2 we used the vari-
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ance instead of a 7 × 7 covariance matrix. In keeping with the approach we

adopted to compare the patterns of results obtained with different tasks, where

we had tested whether the valence judgments averaged by bin across participants

were significantly different from the distribution of the distributional probability

judgments, here we tested whether the mean of the observed valence judgments

was significantly different from the distribution of the simulated valence judge-

ments.

Linking distributional probability judgments and pointwise probabil-

ity judgments

Even when participants are asked about the likelihood of an emotion (or of

an event), there are differences in the ways a judgment of probability can be

elicited. Two strategies that have been used in the prior literature consist in

1) specifying one given emotion or event, and asking participants how likely

that emotion or event is in isolation (‘pointwise’); or 2) specifying the full set

of possible emotions or events, and asking participants to produce a probability

distribution over the set (‘distributional’).

In the case of the ‘pointwise’ judgments, one possible concern is that in-

quiring about the likelihood of one specific emotion would lead participants to

imagine contexts that can lead to that emotion, overestimating how likely those

contexts are. This phenomenon can be modeled within a probabilistic frame-

work by suggesting that participants marginalize over the possible contexts:

P (e|x) =

∫
c

P (e|c,x)P (c)dc (9)

and that the estimate of P (c) is susceptible to contexts that are highly available

to the participants. This would be the case, for instance, if participant used

kernel density estimation to estimate P (c). Imagining contexts that can lead
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to the emotion given would make them more available, leading to an increase

in the estimated probability P (c) for those contexts.

Importantly, for contexts that are already very likely, the increase in prob-

ability would be smaller (they were already likely to begin with), while for

contexts that are less likely, the increase in probability would be greater. As

a consequence, distributions measured by asking participants to produce point-

wise judgments could be higher entropy and closer to uniform. We tested this

prediction as well as two other predictions of this hypothesis.

First, if participants compute P (e|x) marginalizing over possible contexts,

then when we change the set of possible contexts (even without specifying one

specific context) we would expect their estimates of P (e|x) to change accord-

ingly. To test this prediction, we showed participants the subset of stimuli from

Aviezer and Todorov (Aviezer et al., 2012) and told participants that the fa-

cial expressions were produced in a tennis game at the end of a rally (without

disclosing whether the player had won or lost). We predicted that while in nat-

uralistic settings high-intensity emotions are usually negative, in the context of

a tennis game they are similarly likely to be negative or positive. If participants

estimate P (e|x) marginalizing over context, we predicted we would see a shift

from a more unimodal distribution towards a more bimodal distribution when

participants are told that the context is that of a tennis game.

Second, if the distribution for P (e|x) obtained with the pointwise judgments

is more uniform because of inflated estimates of P (c), if we analyzed partici-

pants’ pointwise judgments of P (e|x) without normalizing the distribution to 1,

we should observe that the probabilities are at least as high as the ones observed

in the distributional judgments of P (e|x), and they should sum to more than

1. We tested this possibility reanalyzing the pointwise judgment data without

normalizing the responses to sum to 1.
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Results

Pilot

In a pilot study, we asked participants (n = 190) to label the face images with up

to two words describing the emotion experienced by the character. Participants

overwhelmingly rated the images as reflecting a negative emotion, regardless of

whether the stimulus was that of a player winning or losing a point (Figure 2

A). This finding is in line with the observations in the article by Aviezer et al.

(2012).

Experiment 1

In Experiment 1, we measured emotion judgments made on the basis of facial

expressions. We recruited three groups of participants (n = 160, 135, 200

respectively). Data from participants who failed the control trials were discarded

prior to the analysis, leaving data from m = 156, 119, and 136 participants

respectively.

The first group of participants was asked to perform judgments of emotion

valence, the second group was asked to perform pointwise judgments of the

probability of emotion valence, and the third group was asked to perform dis-

tributional judgments of the probability of emotion valence (see Methods). The

judgments of individual participants were used to compute a distribution over

emotion valence for each of the three ways to elicit judgments.

If these different ways of probing the distribution P (e|x) are interchangeable,

we should obtain the same results in all three experiments. In stark contrast

with this prediction, we observed different distributions in the first, second and

third group of participants (Figure 2B, top).

We used Hotelling’s T squared test to assess the significance of the differences
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Figure 2: A) Word cloud depicting free labeling of the emotions inferred by
participants given the facial expressions; B) Participants’ ratings of the valence
of the emotion (left), of the probability of the emotion given a fixed valence
(“pointwise” probability ratings, center), and of the probability distribution
over possible valences (“distributional” probability ratings, right) given facial
expressions (top), facial expressions and context (middle), and context only
(bottom).
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between the distributional probability ratings, and the means of the valence

ratings and the pointwise probability ratings, respectively. The distributional

probability ratings were significantly different from the mean of the valence

ratings (Hotelling T 2(7, 129) = 38.31, P < 0.0001), and from the mean of the

pointwise probability ratings (Hotelling T 2(7, 129) = 112.10, P < 0.0001). With

the same stimuli, different types of tasks yielded different distributions.

The differences between the valence judgments and the distributional prob-

ability judgments were smaller than the differences between these two tasks and

the pointwise probability judgments. Despite this, they were still significant –

the Hotelling T2 test is a sensitive test, and we had good statistical power thanks

to a relatively large number of participants. Whether or not valence judgments

and distributional probability jugments may be used interchangeably depends

on the size of the difference between their distributions, and on whether it is

sufficiently small to lead to equivalent conclusions. For these reasons, inter-

changeable use of the two tasks is sound only when distributions for both tasks

are known, and the size of the differences are known to be inconsequential for

the conclusions reached.

Experiment 2

In Experiment 2, we measured emotion judgments made on the basis of the

context that caused the emotion using the following sentence: ‘A professional

tennis player just won a very important point.’ (‘won’ was replaced with ‘lost’

with 50% probability). We recruited three groups of participants (n = 150,

150, 150 respectively). Data from participants who failed the control trials

were discarded prior to the analysis, leaving data from m = 129, 113, and 114

participants respectively.

As in Experiment 1, the participants in the three groups performed different

19



types of tasks, producing valence ratings (first group), pointwise probability rat-

ings (second group) and distributional probability ratings (third group) (Figure

2, bottom ). Data were analyzed separately depending on whether the context

specified that the player won or lost the point. We used Hotelling’s T squared

test to assess the significance of the differences between the distributional proba-

bility ratings, and the means of the valence ratings and the pointwise probability

ratings, respectively.

In the case in which the player won the point (Figure 2B, bottom, left), esti-

mation of Hotelling T 2 generated a near-singular matrix and yielded negative T 2

values, which are not interpretable. In the case in which the player lost the point

(Figure 2B, bottom, right), distributional probability ratings were significantly

different from the mean of the valence ratings (Hotelling T 2(7, 51) = 15.55,

P = 0.0296), and from the mean of the pointwise probability ratings (Hotelling

T 2(7, 51) = 107.24, P < 0.0001). Also in this experiment, the distributions

obtained with the three tasks were not the same.

Experiment 3

In Experiment 3, we measured emotion judgments made on the basis of both

facial expressions and the context that caused the emotion. We recruited three

groups of participants (n = 150, 320, 150 respectively). Data from participants

who failed the control trials were discarded prior to the analysis, leaving data

from m = 123, 272, and 109 participants respectively.

As in Experiment 1, the participants in the three groups performed different

types of tasks, producing valence ratings (first group), pointwise probability rat-

ings (second group) and distributional probability ratings (third group) (Figure

2, middle). Data were analyzed separately depending on whether the context

specified that the player won or lost the point. We used Hotelling’s T squared
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test to assess the significance of the differences between the distributional proba-

bility ratings, and the means of the valence ratings and the pointwise probability

ratings, respectively.

In the case in which the player won the point (Figure 2B, middle, left),

distributional probability ratings were also significantly different from the mean

of the valence ratings (Hotelling T 2(7, 50) = 68.94, P < 0.0001), and from the

mean of the pointwise probability ratings (Hotelling T 2(7, 50) = 30.14, P =

0.0001). Across all three experiments, the distributions obtained with the three

types of tasks were not the same. In the case in which the player lost the point

(Figure 2B, middle, right), distributional probability ratings were significantly

different from the mean of the valence ratings (Hotelling T 2(7, 45) = 33.79,

P < 0.0001), and from the mean of the pointwise probability ratings (Hotelling

T 2(7, 45) = 77.53, P < 0.0001).

Cue integration

To test the extent to which different behavioral tasks generated judgments con-

sistent with a Bayesian cue integration model (see Methods), we used the emo-

tion ratings given facial expressions only and the emotion ratings given context

information only to compute predicted emotion ratings given both cues (Figure

3). The accuracy of the predictions was evaluated computing their Pearson cor-

relation with the empirically observed emotion ratings generated by participants

given both expression and context information.

Ratings obtained requesting participants to report a full probability distribu-

tion best aligned with the predictions generated by the Bayesian cue integration

model (Figure 3, right column). Distributional probability ratings obtained with

individual cues generated predictions that correlated highly with the distribu-

tional ratings obtained with both cues both for the ‘win’ context (r = 0.89 and
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Figure 3: Comparison between the observed integration between expression and
context information, and the integration predicted by a Bayesian model rely-
ing on the participant’s emotion inferences given expression alone, and context
information alone. The distributional ratings for the integration of expression
and context show the highest correlations to the integration predicted by the
model for both win and lose contexts.
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for the ‘lose’ context r = 0.96). Judgments of emotion valence fared slightly

worse, with a correlation of r = 0.86 for the ‘win’ context and r = 0.92 for the

lose context. Finally, the pointwise probability ratings aligned well with the

Bayesian cue integration model for the ‘lose’ context (r = 0.95), but poorly for

the ‘win’ context (r = 0.27), failing to account for the reduction in the probabil-

ity assigned to negative emotions. Across all tasks, the Bayesian cue integration

model had more difficulty predicting cue integration for the ‘win’ context.

These results provide an initial suggestion that distributional probability

ratings may yield data that are closer to the representations used by partic-

ipants for inference. However, much stronger evidence is needed to support

this interpretation. In particular, it is necessary to offer hypotheses for why

the judgments in the other two tasks show greater deviation from Bayesian cue

integration, and to test novel predictions generated by these hypotheses.

Simulations

A possible hypothesis for the difference between distributional judgments of

emotion probabilities and judgments of emotional valence is that participants,

when asked to produce a single valence judgment given the probability dis-

tribution they represent, select the most likely valence (maximum likelihood

estimation or MLE). Using a decision theory framework, it can be shown that

MLE judgments are optimal for many intuitive utility functions (see Methods

for details). In MLE judgments are produced selecting the valence associated

with the highest probability, therefore, if the ‘MLE hypothesis’ is correct we

would expect a reduction in the tails of the valence judgments distribution as

compared to the distribution obtained with distributional probability ratings.

We indeed found such a reduction in the tails of valence judgments (Figure 4 A,

black dots, higher values reflect greater tail reduction). To further test whether
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these observations could be well described by the MLE hypothesis, we applied

MLE to the distributions measured with the distributional probability ratings

to compute simulated valence judgments (Figure 4 B). The simulations showed

the expected tail reduction, and captured accurately the amount of reduction

observed in the empirical data (Figure 4 A, violin plots), with the exception of

inferences about emotions given both expression and context in the ‘win’ condi-

tion, where the empirical tail reduction was even greater than predicted by the

MLE model.

In addition, we used the Hotelling T 2 test to assess the difference between the

mean valence judgments and the distribution of valence judgments simulated by

applying MLE to the distributions measured with the distributional probability

ratings. Across all conditions, the mean of the observed valence judgments

was not significantly different from the distribution of the simulated valence

judgments (e|x: T 2(1, 136) = 1.6412, P = 0.2002; e|c win: T 2(1, 56) = 1.6499,

P = 0.1990; e|c lose: T 2(1, 58) = 0.1041, P = 0.7469; e|x, c win: T 2(1, 57) =

3.3935, P = 0.0655; e|x, c lose: T 2(1, 52) = 0.1741, P = 0.6765).

An alternative model that could explain tail reduction is softmax. In fact,

MLE can be seen as a particular case of softmax (in the limit for the base of the

exponential going to infinity). We generated second set of simulations applying

softmax to the observed distributional probability judgments instead of MLE.

Softmax is widely used in the literature on decision making (Daw & Doya, 2006),

and it has been shown that it could be the outcome of resource-limited sampling

(Vul et al., 2014). Like MLE, softmax also yielded tail reduction (Figure 4A).

We used the Hotelling T 2 test to assess the difference between the mean valence

judgments and the distribution of valence judgments simulated by applying soft-

max to the distributions measured with the distributional probability ratings.

The simulated and observed distributions were significantly different only in one
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Figure 4: A) Reduction in the frequency of ratings on the opposite end of the
primary mode predicted by the application of ML inference (left) and softmax
(right). Distributions obtained from 100 simulations with 100 subjects each is
shown in the violin plots, the reduction in the second mode from the observed
distributional probability ratings to the observed valence judgments is depicted
with black dots. B) Observed distribution of valence ratings (left), simulated
distribution of valence ratings obtained applying ML to the distributional prob-
ability judgments (center-left), imulated distribution of valence ratings obtained
applying softmax to the distributional probability judgments (center-right), and
observed distributional probability judgments (right) given facial expressions
(top), expressions and context (middle), and context only (bottom).
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condition (e|c win: T 2(1, 57) = 33.4546, P < 0.001), in all other conditions they

were not significantly different (e|x: T 2(1, 136) = 2.3304, P = 0.1269; e|c lose:

T 2(1, 58) = 1.0904, P = 0.2964; e|x, c win: T 2(1, 57) = 2.0965, P = 0.1476;

e|x, c lose: T 2(1, 52) = 0.0114, P = 0.9149). MLE and softmax were compa-

rable in terms of their accuracy at generating valence judgments from distribu-

tional probability judgments.

Experiment 4

A possible hypothesis for the difference between distributional judgments of

emotion probabilities and pointwise judgments of emotion probabilities is that

participants automatically integrate information about context in their infer-

ences about emotions. In the pointwise judgments, fixing a single emotion

would increase the availability of contexts that lead to that emotion, leading to

a greater weighting of those contexts in the inference of how likely that emotion

is. This hypothesis generates two novel predictions.

First, providing generic information about context might shift ratings of

the probability of different emotions given a facial expression. In particular,

we hypothesized that in naturalistic settings facial expressions such as those

used in this experiment tend to occur more frequently as a consequence of

negative emotions than as a consequence of positive emotions (as suggested also

by participants’ ratings in the pilot study). However, in a tennis match, this

type of facial expressions are far more likely to occur also as a consequence of

positive emotions. If participants automatically integrate information about the

context in their emotion inferences, we would expect that telling participants

that a facial expression was made by a tennis player in a game should affect

the participants’ probability judgments, making positive emotions more likely.

We tested this hypothesis in Experiment 4. Participants (N=200 of whom
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Figure 5: A) Probability ratings (distributional) for emotion given expression
(E|X) in the absence of context information, and for emotion given expression
and context information specifying that the character experiencing the emotion
is a tennis player at the end of a rally, but without specifying whether s/he won
or lost the rally (E|X,C-partial). Even without specifying whether the player
won or lost, knowledge that the context is a tennis game alters the distribution
of emotions. B) Scatter plot comparing pointwise probability ratings normalized
to sum to 1 (x-axis) and non-normalized (y-axis). Dots above the y = x diagonal
indicate inflated probability judgments (for which the sum across all valences
adds to more than 1).
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N=153 successfully completed the control trials and thus were analyzed) were

shown a facial expression and were told that it had been produced by a tennis

player in a game. Participants were asked to produce distributional probability

judgments. As hypothesized, participants rated the positive emotions as more

likely compared to when they were not given any contextual information (Figure

5 A).

This evidence suggests that participants take into account automatically

contextual knowledge when making emotion inferences. However, to further

test the view that this mechanism accounts for the higher-entropy distributions

observed in the pointwise distributional ratings, we sought to identify a signa-

ture of context-dependent effects within the data obtained from the pointwise

distributional task.

If the valence fixed in the pointwise distributional led to overestimating the

probability of contexts that can lead to that valence, we should observe an

overall inflation of probabilities in the pointwise distributional ratings. To test

this prediction, we reanalyzed the data obtained with pointwise distributional

rating, now without normalizing the ratings to yield a probability distribution

that sums to 1. In line with the prediction, the raw pointwise probability ratings

were inflated across the board (Figure 5 B).

Discussion

In this article we have investigated whether representations of emotions are

‘transparent’ or ‘opaque’ by testing whether different behavioral tasks commonly

used to probe emotion representations yield the same results. Behavioral ratings

obtained with different tasks were very different (Figure 2), demonstrating that

emotion representations are opaque. The differences between the distributional

probability judgments and the pointwise probability judgments were greater
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than the differences between the distributional probability judgments and the

valence judgments.

We have introduced two criteria that can be used to test whether behavioral

judgments obtained with a given emotion task might reflect the participants’

internal representations of emotions. We have applied the criteria to judgments

of emotions given facial expressions and context. Our results indicate that,

among the type of judgments tested, distributional probability judgments are

the most promising candidate to reflect internal representations of emotions.

More research is needed to replicate and strengthen this conclusion.

Ideally, other researchers who study emotion inferences will be able to use the

criteria we have introduced to mitigate the challenges posed by opacity, testing

whether the tasks they plan to use are likely to reflect internal representations of

emotions. In cases in which this approach would be too complex and costly, we

would provisionally favor tasks eliciting distributional probability judgments.

The distinction between opaque and transparent representations is related to

but different from the notion of ‘epistemic transparency’ (Boghossian, 1994). In

fact, even if participants had access to their own representation of the probability

distribution over different emotions, the ‘valence judgment’ task still required

them to generate as response a single valence value, leading to a discrepancy

between the distribution of judgments and the represented distribution over

emotions.

This distinction is also different from the distinction between ‘competence’

and ‘performance’ (see Hymes (1972)), as the discrepancy between performance

and competence is usually thought to reflect ‘suboptimal’ performance deriving

from cognitive limitations, while behavioral judgments might deviate from the

underlying representations due to task demands in ways that are ‘optimal’ (for

example, we have discussed in the Method section the optimality of Maximum

29



Likelihood given certain choices of utility functions).

The finding that different behavioral tasks commonly used in the field yield

radically different emotion ratings indicates that great caution should be exerted

in using interchangeably the ratings and distributions obtained from different

tasks, not only in the case of emotion inferences but also in other cognitive

domains.

Considering the present results obtained from different tasks and experimen-

tal manipulations, we propose that given limited information (such as a facial

expression), participants infer emotions by generating plausible situations, and

weighting each emotion by the probability of the situations that might cause it

and are compatible with what is known (i.e. see Equation 9). This perspective

accounts for the flexibility with which different emotions can be attributed to

the same face. In this view, when participants were given a facial expression

and an emotion, they might have over-sampled situations that are compatible

with both the expression and the emotion, overestimating the probability of that

emotion. Finally, when participants were given partial context information (i.e.

‘the character is a tennis player just after a rally’), this information changed

the space of plausible situations, altering the probability assigned to different

emotions.

Distributional probability ratings were found to align well with predictions

of a Bayesian cue integration model (Figure 3), and applying a ML decision

process to them yielded results closely matching the valence judgments (Fig-

ure 4). These results converge to suggest that asking participants to produce

distributional probability ratings might reflect more closely the uncertainties

participants represent and use to reason about emotions.

A challenge for the investigation of opaque representations is that behav-

ioral responses in a single task can be explained by multiple possible models of
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the underlying emotion representations. Changes in the model of the underly-

ing representations can be compensated by appropriate changes in the decision

function to produce the same outputs (Einhorn & Hogarth, 1981).

We have attempted to resolve this ambiguity taking advantage of the com-

positionality of representations, relying on the intuition that operations over

representations are not invariant to the decision function. The ML decision

function, for example, selects the emotion with highest probability, and thus

induces a loss of information about the relative probability of the less likely

emotions. In the presence of a bimodal representation, ML can lead to a re-

duction in the minor mode in the observed behavioral judgments (see Figure

4A) - which can lead to underestimating the contribution of the minor mode

for cue integration (Figure 3). Due to this information loss, there may be no

operation on the judgments that can model cue integration. This strategy may

not be able to resolve all ambiguity about the nature of representations, but it

can restrict the space of possibilities. This approach is not limited to emotion

inferences: it could be used in other domains in which judgments are generated

thanks to the integration of multiple cues.

Contextual information is known to play a key role for emotion inferences

(Carroll & Russell, 1996; Aviezer et al., 2012; Kayyal, Widen, & Russell, 2015;

Barrett et al., 2011; Hassin et al., 2013). In this study, contextual information

affected emotion inferences not only when it was clearly relevant to interpret

facial expressions, informing the participant about whether the player had lost

or won a point, but also when it was much more subtle (Figure 5A). Previous

work (Barrett & Kensinger, 2010) has demonstrated that when participants are

asked to label emotional faces, neutral contexts are automatically encoded in

memory. These observations converge to suggest that humans spontaneously

process contextual information and use it to update their expectations about
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the emotions that the people they encounter are likely to experience.

Across all behavioral tasks, Bayesian cue integration generated more accu-

rate predictions for ‘lose’ contexts than for ‘win’ contexts. A possible explana-

tion is that none of the behavioral tasks perfectly reflect the underlying emotion

representations, and that the behavioral judgments are closer to the underlying

representations for the ‘lose’ context than for the ‘win’ context. Alternatively, it

is possible that Equation 6 does not perfectly reflect cue integration - for exam-

ple, distinct mechanisms might be in play for the integration of facial expressions

with incongruent contextual information.

In line with this possibility, ML applied to the distributional probability rat-

ings led to a reduction in the minor mode of the distribution that matched closely

the observed valence judgments in all cases, with the exception of the integra-

tion between facial expressions and a ‘win’ context (Figure 4A), for which the

empirical reduction in the minor mode exceeded that predicted by ML. In cases

with conflicting information, integration might not be an appropriate framework

for the decision process, and models of cue competition might generate more

accurate predictions. An additional possibility is that including mental states

such as beliefs and desires might be critical to account for the pattern of results

observed in conditions in which information from different cues appears to be in

conflict. Recent evidence(Wu, Baker, Tenenbaum, & Schulz, 2018) lends sup-

port to this possibility, indicating that richer models that include mental states,

outcomes and emotional expressions can capture the integration of congruent

and incongruent cues with comparable accuracies. More generally, developing

models that include multiple kinds of mental states is a key direction for future

research.

Our results indicate that emotion representations might be more uncertain

than it would appear just by analyzing judgments of emotion valence. A deci-
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sion function like MLE or softmax can reduce the uncertainty of judgments as

compared to the distribution that generated them. This occurs in particular in

the presence of a minor mode in the distribution, as in the case of ambiguous fa-

cial expressions. Correctly recovering the presence of a minor mode is important

to model inferential mechanisms such as cue integration. In fact, if an observer

represents the likely emotions given a facial expression with distribution that

has a minor mode, less novel contextual evidence would be needed to produce

a shift in the observer’s judgments.

One key component that will need to be included in future models is arousal

(Russell, 1980; Barrett, 1998). Another limitation of the present study is that

it is restricted to emotions - observers make a variety of inferences about other

mental states including cognitive states (i.e. ‘confused’) or states engaging the-

ory of mind (i.e. ‘sympathy’). Future research can build on the conclusions

reached in this article to test more complex models, choosing carefully which

behavioral tasks to use.

Future work can attempt to estimate jointly the underlying representations

and the decision function searching among a space of decision functions. Com-

positionality can be exploited following the strategy proposed in this article

to search within a hypothesis space of decision functions. For example, the

decision function can be modeled as generating judgments with a probability

proportional to p(E|cues)β , a family of decision functions that produces the un-

derlying representations when β = 1, and converges to MLE when β →∞ (see

Gershman, Pouncy, and Gweon (2017) for an example in a different context).
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