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Abstract
After seeing one solid object apparently passing through another, or a person taking the long
route to a destination when a shortcut was available, human adults classify those events as
surprising. When tested on these events in violation-of-expectation (VOE) experiments, infants
look longer at the same outcomes, relative to similar but expected outcomes. What cognitive
processes underlie these judgments from adults, and perhaps infants' sustained attention to
these events? As one approach to test this question, we used functional magnetic resonance
imaging (fMRI) to scan the brains of human adults (total N = 49, 22 female, mean age of 26
years) while they viewed stimuli that were originally designed to test for physical and
psychological expectations in infants. We examined non-mutually exclusive candidates for the
processes underlying the VOE effect, including domain-general processes, like visual prediction
error and curiosity, and domain-specific processes, like prediction error with respect to
distinctively physical and psychological expectations (objects are solid; agents behave
rationally). Early visual regions did not distinguish between expected and unexpected events
from either domain. By contrast, multiple demand regions, involved in goal-directed attention,
responded more to unexpected events in both domains, providing evidence for domain-general
goal-directed attention as a mechanism for VOE. Left supramarginal gyrus (LSMG) was
engaged during physical prediction and responded preferentially to unexpected events from the
physical domain, providing evidence for domain-specific physical prediction error. Thus, in adult
brains, violations of physical and psychological expectations involve domain-specific, and
domain-general, though not purely visual, computations.

Significance Statement
When an object hovers in midair, or a person acts irrationally, infants look and pay attention to
those events. What mental processes account for this behavior: that these events are visually
novel, evoke curiosity, and/or violate infants’ expectations about the physical and psychological
world? We scanned adults using functional magnetic resonance imaging and found that adults
do not merely process such events as novel visual stimuli. Instead, these events evoke
distinctively physical and psychological processing, as well as domain-general, internally driven
attention. These results serve as a baseline for future studies of infants and illustrate the
promise of using the tools of cognitive neuroscience to address questions about infant minds.
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Main Text
In the first year of life, human infants rapidly develop expectations about the properties and
behavior of inanimate objects, and animate agents. Like adults, they distinguish between
surprising events and visually similar but unsurprising events (e.g. a ball rolls off the edge of a
table, and hovers in midair, or stops rolling before it reaches the edge of the table). Infants look
longer at the unexpected than expected outcome (the violation-of-expectation, or VOE,
response) towards many events that adults rate as surprising (1, 2): for example, when objects
float in midair (3) or appear to pass through each other (4), and when agents change their goals
(5) or act inefficiently (6). The mental processes that drive longer looking in these studies are
still hotly debated (7, 8). Do infants respond to these events in virtue of domain-specific
expectations about psychological and physical events (9, 10)? Or are there stimulus-driven
alternative explanations that could also explain these patterns of behavior (11, 12)? And do
longer looking in infants, and judgments of surprise in adults, reflect the detection of a surprising
outcome, or also motivation to explore and explain the source of surprise (13, 14)?

Domain-specific hypotheses
One hypothesis regarding VOE effects in the developmental psychology literature is that
surprising events violate distinctively physical and psychological expectations: that objects are
solid and permanent; and that agents act efficiently towards goals. The strongest version of this
hypothesis is that infants possess ‘core knowledge': an early-emerging conceptual repertoire
consisting of domain-specific systems for different domains of thought, including physics,
psychology, number, and space (15). There is evidence from developmental psychology that
infants have distinct expectations for agents and objects: Infants represent objects as solid and
permanent entities that do not hover in midair, or blip in and out of existence (10). Infants
represent agents as actors who have goals, and pursue them in consistent and efficient ways
(6). There is also evidence that infants have some shared expectations across both domains.
For example, infants expect that both agents and objects are solid entities (16).

Domain-general hypotheses
Another broad hypothesis under consideration is that surprising events from
violation-of-expectation studies evoke domain-general processes. One such process is
stimulus-driven prediction error (i.e. a response to the visual features of the unexpected
stimulus). While infant looking-time studies typically account for some simple perceptual
alternative explanations, infants do reliably look longer at scenes that are visually novel (17, 18).
Furthermore, unexpected and expected events must be visually distinguishable, and thus each
pair of events differs along at least one visual dimension. Developmental psychologists remain
divided about whether for any pair of VOE stimuli, longer looking may be driven by distinctive
visual features (19, 20).

A second domain-general hypothesis is that unexpected physical and psychological events
evoke curiosity and motivation to gain information about the source of surprise (13, 14). Under
this hypothesis, infant looking is not merely a passive behavior, but rather an active process
driven by the infant’s own learning goals (21). There is some evidence that unexpected events
evoke curiosity in infants. After viewing an unexpected physical event, such as a ball rolling
through a solid wall, infants show enhanced learning about that object (22), and choose to
explore that object (23) as though they are trying to explain the outcome (e.g. by banging the
ball after seeing a violation of solidity, and dropping the ball after seeing a violation of support)
(22). In addition, the VOE response only arises when infants have reason to be curious: Infants
look longer when a ball passes through a solid wall, rather than stopping short of the wall, but
not if they first see that the wall has an archway through it, allowing the ball to pass through
(24).
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The contribution of functional neuroimaging to testing these hypotheses
Plausibly, all of these mental processes could influence infant looking, but which of these
accounts for the VOE response? Despite decades of behavioral work, controversy remains.
Here, we consider the potential contribution of neuroimaging to this debate, which can reveal
the hidden internal processes underlying VOE by studying them simultaneously and directly.

If domain-specific processing underlies the VOE response, what brain regions could support
those computations? In adults, different cortical regions represent the properties and dynamics
of agents and objects. A set of regions including the temporoparietal junction (TPJ), medial
prefrontal cortex (MPFC), precuneus (PC), and superior temporal sulcus (STS) are engaged
during social perception and cognition (25, 26). The STS, in particular, tracks other people’s
actions, intentions, and interactions (27–32). A distinct set of regions including supplementary
motor area, superior parietal cortex, and supramarginal gyrus (SMG), represents physical
information including object mass and stability (33–35). As early as has been measured, similar
regions in infants are implicated in the processing of social vs physical stimuli (36–39), making
studying these regions in adults relevant to hypotheses about the minds and brains of infants.
Prior work measuring neural responses towards surprising physical and psychological stimuli
has reported increased neural activity toward unexpected outcomes in regions associated with
social processing, as well as domain-general multiple demand (40–43), consistent with a neural
prediction error (44): an increased response that encodes the difference between what was
expected and what was observed. If these regions compute domain-specific prediction error in
VOE events, then we expect to observe greater activity in each of these regions for unexpected
events from the matching domain (e.g. a greater response to unexpected than expected
physical events in SMG, and to unexpected than expected psychological events in STS).

By contrast, if early visual processing underlies the VOE response, then which regions would
we expect to support this process? Early visual regions, including the primary visual cortex (V1)
and motion-sensitive area (MT), are sensitive to a host of low-level visual features, including
speed and direction of motion, and spatial extent, frequency, and orientation. New visual stimuli,
relative to repeated visual stimuli, evoke activity in early visual regions, in both adults and
infants (45–47). Thus, under the hypothesis that differences in stimulus features like visual
orientation, motion, and frequency underlie the VOE response, we might expect to observe
greater activity to unexpected than expected events, in both domains, in early visual regions,
like V1 and MT.

If endogenous curiosity underlies the VOE response, a distinct set of regions would be
recruited. Regions within the multiple demand (MD) network (48), including regions in the frontal
and parietal cortices, the insula, and the anterior cingulate cortex, respond with greater activity
when human adults are engaged in a range of difficult vs easy tasks, regardless of the task's
modality (e.g. auditory vs visual) or content (e.g. verbal arithmetic vs motor inhibition). These
regions are also engaged when people consider curiosity-inducing trivia questions (49), watch
magic tricks (43), and learn from prediction error over rewards (50). Studies of infants show
similar effects: Regions along the lateral surface of the frontal and prefrontal cortices show
greater activity to violations of a previously learned visual or auditory pattern (51–53). Thus, if
domain-general endogenous attention underlies the VOE response, then we would expect
regions in the multiple demand network to respond with greater amplitude to unexpected than
expected events from both domains.
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Figure 1. Overview of the methods of Experiments 1-2. (A1-2) Overview of VOE task. (top half)
Stimuli from the domain of physics, including violations of object solidity and permanence.
(bottom half) Stimuli from the domain of psychology, where the source of the violation is the
agent performing a surprising action (psychology-action, including violations of goal-directed
action and action efficiency). See Figure 5 for stimuli involving surprising physical outcomes,
resulting from an agent’s action, that were also included in Experiment 2. (B1-2) Structure of
VOE run, with each trial containing a familiarization movie followed by both an expected or
unexpected movie (Experiment 1), or an expected or unexpected movie (Experiment 2). (C1-2)
Localizer tasks and contrasts for physics and psychology regions (interacting dots localizer,
DOTSloc), multiple demand regions (spatial working memory localizer, spWMloc), and early
visual regions (motionLoc).

Overview of current research
Here, we sought complementary evidence to the debate about infant VOE effects, by scanning
the brains of adults while they watched events that were designed to test for physical and
psychological expectations in infants. We studied cortical regions likely to be involved in the
hypothesized processes underlying the VOE response (psychological and physical prediction,
early visual processing, and goal-directed attention; see Figure 2A) in subject-specific
functional regions of interest (ssfROIs), defined using validated localizer tasks from prior
literature (35, 48, 54). See Methods section for details about our localizer tasks, and the ssfROI
approach. We then measured the responses of these regions to unexpected and expected



5

psychological and physical events designed for infant studies. We tested whether the responses
in each region are driven by manipulations of domain (psychology versus physics), event type
(expected versus unexpected), or an interaction of these factors. Under domain-specific
hypotheses, we expect a specific interaction between domain and event, with putative physics
regions responding more to unexpected than expected physical events, but not psychological
events, and vice versa for putative psychological regions. Under domain-general hypotheses,
we expect greater responses to unexpected events for both domains in the same regions. We
conducted two pre-registered functional magnetic resonance imaging (fMRI) experiments (see
Methods for links to registrations). Here, we report the results of exploratory analyses from
Experiment 1, which we pre-registered as confirmatory analyses in Experiment 2. Because the
experiments and their results are similar, we report the methods and results folding across
experiments. Conducting two experiments allows us to evaluate the robustness of our findings;
thus, we will make the strongest claims about findings that replicate in both samples,
generalizing across stimulus materials and design choices.

Our approach has both strengths and weaknesses. Studying adult brains, rather than infant
brains, allows us to identify regions involved in each hypothesized process in individual
participants using independently validated localizer tasks. This procedure gives us more
confidence that the responses we measure correspond to the hypothesized mental processes,
strengthening our “reverse inference” from neural activity to cognitive mechanisms (55, 56).
Since there is a strong correspondence between the large-scale topography of adult brain
networks between adults and infants, as early as they can be measured (57, 58), insights from
adult brains could directly guide future studies of infant brains. However, researchers remain
divided on how much continuity there is between infant and adult brains (59). We will return to
the strengths and weaknesses of our approach in the discussion.

Results
We scanned the brains of 49 adults (N=17 in Experiment 1, N=32 in Experiment 2; see Methods
for details) using fMRI while participants watched movies adapted from infant behavioral
research, as well as one (Experiment 1) or three (Experiment 2) previously validated localizer
tasks designed to identify regions involved in domain-specific psychological and physical
prediction, low-level visual processing, and domain-general endogenous attention. See Methods
for details about our localizer tasks.

Our violation-of-expectation (VOE) stimuli from Experiment 1 consisted of 4 handcrafted sets
(‘scenarios’) of animated videos, adapted directly from previous studies from the infant cognition
literature, involving violations of goal-directed action (goal) (5), action efficiency (efficiency) (60),
object solidity (solidity) (61) and object support (support) (3).

Our violation-of-expectation (VOE) stimuli from Experiment 2 were selected from 2 large-scale
procedurally generated video datasets, inspired by the infant cognition literature (1, 2), and also
contained 3 hand-animated scenarios from Experiment 1. In total, there were 281 scenarios. The
12 scenarios from the domain of physics featured inanimate objects, barriers, and rotating fans.
In surprising events, solid objects passed through each other (solidity) or blipped in and out of
existence (permanence) (62) (Figure 1A). The 16 scenarios from the domain of psychology
featured agents moving in physical environments, around physical obstacles, towards goal
objects (Figure 1B-C), and were further divided into scenarios involving surprising actions (12
scenarios; Figure 1B), or surprising environments (4 scenarios; Figure 1C) in which the actions

1 This deviates from our pre-registration which specified 32 scenarios, due to an error in our experimental
scripts.
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occurred. In the psychological scenarios involving surprising actions, agents changed their
goals (goal), or acted inefficiently (efficiency) (Figure 1B). In the psychological scenarios
involving surprising environments, agents moved through an (apparently) solid wall
(agent-solidity) (16), or moved as though they were circumventing an obstacle, which was then
missing (infer-constraint) (63). Our primary analyses focus on the psychology-action events; in
further exploratory analyses, we studied neural responses to the psychology-environment
events. Expected and unexpected events within each domain were matched along an array of
low-level visual features (Figure S4). Independent adult observers rated the unexpected events
from these three categories (physics, psychology-action, and psychology-environment) as
equally surprising (Figure S5).

Figure 2. (A) Domain-specific and (B) domain-general parcels studied in Experiments 1-2,
overlaid on an MNI152 template brain. Dotted lines indicate focal regions, pre-registered in
Experiment 2, including left and right supramarginal gyrus (LSMG, RSMG), left and right
superior temporal sulcus (LSTS, RSTS), right frontal cortex (RFC), anterior parietal cortex
(APC), primary visual cortex (V1), and middle temporal area (MT). (A) The full set of
domain-specific regions we explored, including frontoparietal parietal regions implicated in
physical understanding, and frontal regions implicated in action observation. (B) The full set of
domain-general regions we explored, including more multiple demand regions. MNI coordinates
identifying the X, Y, and Z slice positions are listed below each figure. All data used to identify
these parcels were independent of the data used to extract responses in the primary VOE task
in both experiments (see SI for details about parcel definition).
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Figure 3. Results of univariate subject-specific functional regions of interest (ssfROI) analysis
from Experiment 1 (exploratory) and Experiment 2 (confirmatory). (A) Parcels for all focal
regions of interest (ROIs). (B) Localizer tasks and contrasts for voxel selection for both
experiments. (C) ssfROI results in domain-specific regions (first two columns: left and right
superior temporal sulcus, STS, and left and right supramarginal gyrus, SMG), domain-general
early visual regions (bilateral primary visual cortices, V1, and bilateral motion-sensitive area,
MT), and domain-general multiple demand regions (bilateral anterior parietal cortices, APC, and
right frontal cortex, RFC). Y axis indicates the average beta (i.e. amplitude of response) per
region, relative to fixation/rest, across 17 participants (Exp 1) and 32 participants (Exp 2). Error
bars indicate the standard error of the mean, taking into account within-subjects variance.

Results in focal domain-specific regions
In a first set of analyses, we studied neural responses in a small number of regions that served
as proxies for each of our hypothesized cognitive processes (psychological and physical
prediction, early visual processing, endogenous attention). Our domain-specific physics regions
were left and right supramarginal gyrus (SMG). Our domain-specific psychology regions were
left and right superior temporal sulcus (STS). Both regions were chosen based both on their
domain-specific functions based on prior literature, and on their preferential responses to social
and physical stimuli from both our localizer task and our primary VOE task. Data used to choose
these regions, and to select ROIs for individual participants, were independent of the data used
to evaluate their responses to the VOE stimuli. All focal ROIs, including SMG and STS, were
pre-registered ahead of Experiment 2. See SI for details.

We first conducted (Exp 1) and pre-registered (Exp 2) a manipulation check to assess whether
the neural VOE effect declined across experimental runs (see SI for details). Following this
procedure, we restricted our analyses to the first run of the VOE task in Experiment 1, and the
first two runs of the VOE task in Experiment 2.
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Then, we tested the hypothesis that the VOE response is supported in part by domain-specific
processing. Throughout our results we will refer to neural VOE effects (i.e. unexpected vs
expected) as “event” effects, and neural domain effects (i.e. psychology vs physics) as “domain
effects”. Do we find evidence for domain-specific processing of violations of physical and
psychological expectations, in cortical regions selective for those domains?

Physics ROIs
In Experiment 1, we first confirmed the selectivity of left and right SMG for physical over social
stimuli: Both left and right SMG responded preferentially to physical events (left SMG: 95% CI =
[0.252, 0.432], unstandardized B coefficient = 0.342, p-value < .001, two-tailed, Cohen’s d =
0.454, Bayes Factor (BF) > 1000; right SMG: [0.169, 0.365], B = 0.267, p < .001, two-tailed, d =
0.326, BF > 1000). Then, we conducted the key test for physical prediction error. We found that
left SMG showed a VOE response that differed across domains (domain x event interaction
effect: [0.104, 0.397], B = 0.25, p = 0.001, two-tailed, d = 0.422, BF = 2.758). LSMG responded
more to unexpected than expected physical events (B = 1.031, p = <.001, two-tailed), but did
not distinguish between unexpected and expected psychological events (B = 0.03, p = 0.888,
two-tailed). RSMG did not show a main effect of event ([0.039, 0.399], B = 0.219, p = 0.018,
two-tailed, d = 0.3, BF = 0.231), nor an interaction between event and domain ([-0.123, 0.237],
B = 0.057, p = 0.535, two-tailed, d = 0.078, BF = 0.017).

We then pre-registered the prediction for domain-specific prediction error in left SMG in
Experiment 2. We again found that left SMG showed a signature of domain-specific prediction
error: an interaction between domain and event ([0.104, 0.412], B = 0.258, p = 0.001, two-tailed,
d = 0.441, BF = 2.185), with greater responses for unexpected than expected physical events B
= 0.51, p = 0.023, two-tailed), and no significant VOE effect for psychological events (B =
-0.241, p = 0.28, two-tailed). Right SMG showed a marginally higher response to unexpected
events regardless of domain ([-0.007, 0.329], B = 0.161, p = 0.062, two-tailed, d = 0.253, BF =
0.078), with no interaction between event and domain ([-0.111, 0.224], B = 0.057, p = 0.511,
two-tailed, d = 0.089, BF = 0.017). Like in Experiment 1, both left and right SMG responded
more to physical than psychological events (left SMG: [0.104, 0.412], B = 0.258, p = 0.001,
two-tailed, d = 0.441, BF = 2.185; right SMG: [0.336, 0.672], B = 0.504, p < .001, two-tailed, d =
0.79, BF > 1000). See Methods and SI for details about model specification.

Psychology ROIs
In Experiment 1, we found that both left and right STS responded more to psychological than
physical events (left STS: [-0.509, -0.148], B = -0.329, p < .001, two-tailed, d = -0.449, BF =
6.951; right STS: [-0.699, -0.317], B = -0.508, p < .001, two-tailed, d = -0.654, BF > 1000).
However, we did not find evidence for a distinctively psychological prediction error–an
interaction between event and domain– in these regions (left STS: [-0.131, 0.23], B = 0.05, p =
0.593, two-tailed, d = 0.068, BF = 0.016; right STS: [-0.218, 0.116], B = -0.051, p = 0.553,
two-tailed, d = -0.075, BF = 0.016) Instead, we found that the right STS responded more to
unexpected events from both domains (right STS: [0.091, 0.425], B = 0.258, p = 0.003,
two-tailed, d = 0.381, BF = 1.177 whereas the left STS did not show a significant main effect of
event ([-0.012, 0.349], B = 0.168, p = 0.07, two-tailed, d = 0.23, BF = 0.074)

In planning for Experiment 2, in which we plausibly had greater statistical power (due to the
larger sample size, more stimuli, and more runs of data), we pre-registered two alternative
hypotheses: that the STS would show domain-specific psychological prediction error, which
would lead to an interaction between event and domain, or that the STS encodes both physical
and psychological information relevant for action understanding, which would lead to a main
effect of domain, and of event, but no interaction effect. In the confirmatory analyses of
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Experiment 2, we found support for neither hypothesis. Both left and right STS responded more
to psychological events (left STS: [-0.491,-0.109], B=-0.3, p=0.002, two-tailed, d = -0.413, BF =
1.584; right STS: [-0.405,-0.08], B=-0.242, p=0.004, two-tailed, d = -0.392, BF = 0.861).
However, neither left nor right STS responded more to unexpected than expected events (left
STS: [-0.129,0.253], B=0.062, p=0.524, two-tailed, d = 0.086, BF = 0.019; right STS:
[-0.039,0.286], B=0.123, p=0.139, two-tailed, d = 0.2, BF = 0.039), and there was no interaction
between domain and event in these regions (left STS: [-0.257,0.125], B=-0.066, p=0.501,
two-tailed, d = -0.091, BF = 0.019; right STS: [-0.109,0.216], B=0.054, p=0.517, two-tailed, d =
0.087, BF = 0.016). Results were similar when we defined STS ROIs not based on the external
localizer, but rather, as voxels that responded more to psychological than physical VOE events
(see SI for details). Thus, we did not find consistent evidence for domain-general or
domain-specific psychological prediction error in our focal psychology ROIs.

Next, we tested for evidence for domain-general processing of violations of expectation, in
cortical regions associated with visual processing and endogenous attention.

Early visual ROIs
In Experiment 1, we found via exploratory analyses that neither left nor right V1 responded more
to unexpected than expected events (left V1: [-0.222, 0.23], B = 0.004, p = 0.973, two-tailed, d =
0.004, BF = 0.018; right V1: [-0.293, 0.174], B = -0.06, p = 0.618, two-tailed, d = -0.063, BF =
0.021). Both left and right V1 responded more to psychological events (left V1: [-1.13, -0.678], B
= -0.904, p < .001, two-tailed, d = -0.986, BF > 1000; right V1 [-1.022, -0.555], B = -0.788, p <
.001, two-tailed, d = -0.832, BF > 1000).

In Experiment 2, we found again that neither bilateral V1 nor bilateral MT responded differently
to unexpected and expected events (V1: [-0.171, 0.356], B = 0.093, p = 0.492, two-tailed, d =
0.093, BF = 0.027; MT: [-0.079, 0.187], B = 0.054, p = 0.428, two-tailed, d = 0.107, BF = 0.015).
Both bilateral V1 and bilateral MT responded more to physical than psychological events (the
opposite effect from that in Experiment 1) (V1: [0.312, 0.839], B = 0.575, p < .001, two-tailed, d
= 0.575, BF = 145.691; MT: [0.594, 0.86], B = 0.727, p < .001, two-tailed, d = 1.437, BF > 1000).
The higher average response to physical events in MT appears to be driven by variance in
low-level statistics in the stimuli (see SI for details); after controlling for these features, MT no
longer showed a significant domain preference ([-0.01, 0.389], B =0.19, p = 0.064, two-tailed, d
= 0.137). V1 continued to show a preference for physical events, after accounting for these
same features ([0.122, 0.813], B =0.468, p = 0.008, two-tailed, d = 0.196)

In sum, we found no consistent domain-specific responses, and consistently found no VOE
effects, in early visual regions.

Goal-directed attention ROIs
Lastly, we tested the hypothesis that the VOE response is (also) supported by domain-general
endogenous attention by studying responses in two multiple demand regions: the right frontal
cortex (RFC) and bilateral anterior parietal cortex (APC; see SI for evidence for low overlap with
SMG ROIs in individual participants). These two particular ROIs were pre-registered ahead of
Experiment 2, and chosen based on prior literature and the results of Experiment 1 (see SI for
details).

In Experiment 1, we found via exploratory analyses that right frontal cortex (RFC) responded
more to unexpected than expected events (main effect of event: [0.097,0.434], B=0.265,
p=0.002, two-tailed, d = 0.387, BF = 1.381). This region did not respond preferentially to
physical or psychological events (main effect of domain: [-0.047,0.291], B=0.122, p=0.16,
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two-tailed, d = 0.178, BF = 0.036), and there was no interaction between event and domain
([-0.2,0.138], B=-0.031, p=0.719, two-tailed, d = -0.045, BF = 0.014). We found that bilateral
anterior parietal cortex (APC) also responded more to unexpected than expected events (main
effect of event: [0.096,0.422], B=0.259, p=0.002, two-tailed, d = 0.391, BF = 1.453), and
responded more to physical than psychological events (main effect of domain: [0.14,0.466],
B=0.303, p<.001, two-tailed, d = 0.458, BF = 7.935), with no interaction between domain and
event ([-0.099,0.227], B=0.064, p=0.447, two-tailed, d = 0.096, BF = 0.017).

We then pre-registered these same predictions in Experiment 2. We found that both RFC and
APC responded more to unexpected than expected events (RFC: [0.103, 0.48], B = 0.291, p =
0.003, two-tailed, d = 0.407, BF = 1.36; APC: [0.032, 0.436], B = 0.234, p = 0.024, two-tailed, d
= 0.305, BF = 0.208), with no intersection between domain and event (RFC: [-0.297, 0.08], B =
-0.109, p = 0.261, two-tailed, d = -0.152, BF = 0.028; APC: [-0.312, 0.092], B = -0.11, p = 0.287,
two-tailed, d = -0.144, BF = 0.029). Both RFC and APC responded more to physical than
psychological events (RFC: [0.407, 0.783], B = 0.595, p < .001, two-tailed, d = 0.831, BF >
1000; APC: [0.401, 0.804], B = 0.602, p < .001, two-tailed, d = 0.786, BF > 1000).

Controlling for visual features
We tested in an exploratory analysis whether any results (domain-specific event response in
LSMG, domain-general event responses in APC and RFC) from Experiment 2 are explained by
variability in the lower-level visual statistics in our stimuli (e.g. motion, spatial extent). We
focused this analysis on Experiment 2 which had many more unique stimuli than Experiment 1
and therefore could support the full set of visual features as predictors. We found that after
accounting for variability in the contrast, luminance, motion, spatial frequency content,
rectilinearity, and curvilinearity of the stimuli, all positive and negative VOE effects from our
confirmatory (Exp 2) analyses held, including the null findings in V1, MT, LSTS, and RSTS, as
well as the positive effects in LSMG, APC, and RFC. The domain preferences in three
domain-specific regions (RSMG, LSTS, RSTS) also remained significant, after controlling for the
visual features. The domain preferences for V1 held after controlling for these features, but the
direction of these preferences were inconsistent across experiments and stimuli. The apparent
preference for physical events in the two MD regions (APC and RFC) and one visual region
(MT) were no longer significant, after controlling for visual features. See SI for details.

Exploring domain and event effects across many cortical regions
In the univariate analyses over focal regions, we searched for neural VOE effects in 8
domain-specific and domain-general regions. However, we also wanted to characterize the
responses of regions across the cortex. As a complementary approach, in further exploratory
analyses, we studied domain and event univariate effects in a larger set of 18 domain-specific
regions and 24 domain-general regions (see SI for details). We studied the responses in these
regions in two ways. First, we looked in each region for evidence of a domain or event effect in
the univariate response, with a conservative significance threshold to account for the number of
regions we explored (Bonferroni correction; ɑ = .002 for domain-general regions; ɑ = .003 for
domain-specific regions). None of the regions we explored, in either experiment, showed a
significant VOE effect, though many showed differential responses to physical and
psychological events. See SI for details about this analysis, as well as results from whole-brain
analyses.

Finally, we conducted a series of analyses investigating the reliability of event and domain
information across domain-specific and domain-general regions. We took advantage of the 2x2
design of our experiment (psychology vs physics; unexpected vs expected), split the data into
two halves, and computed 2 effect sizes per split: (i) domain preferences for expected events,
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and separately, domain preferences for unexpected events, and (ii) event preferences for
psychological events, and separately, event preferences for physical events. Then, across
regions, we studied the reliability of the effect sizes for events across domains, and domains
across events. Are domain-general regions and domain-specific regions organized by domain
and event, respectively? Or do the responses in these regions go beyond the information they
were defined over (attentional demand and visual processing for domain-general regions; social
vs physical prediction for domain-specific regions)?

Figure 4. Univariate effect size results across all domain-specific regions (A-B) and
domain-general regions (C-D) from Experiments 1-2. (A) and (C) show correspondence
between domain information across event types. (B) and (D) show correspondence between
event information across domains. Effect sizes from Experiment 2 were derived from models
that controlled for low-level visual statistics between events. ~ p < .10, * p < .05, ** p < .01, ***p
< .001, two-tailed, non-parametric test for independence.

Across both Experiments 1 and 2, we found that response magnitude across 24 putatively
domain-specific regions is reliable by domain, but not by event. For these regions, the size of a
region’s domain effect (psychology vs physics) for expected events strongly predicts the size of
the same region’s domain effect for unexpected events (Exp 1: r = 0.782, p < .001; Exp 2: r =
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0.844, p < .001). However, the size of a region’s VOE effect (unexpected vs expected) for
psychology-action events was weakly anticorrelated with the size of the same region’s VOE
effect for physics events, for both experiments (Exp 1: r = -0.495, p = 0.04; Exp 2: r = -0.419, p =
0.087). The reliability of domain information was greater than for event information
(bootstrapped difference in correlations; Exp 1: 95% CI [0.722, 1.553], p < .001; Exp 2: 95% CI
[0.894, 1.688], p < .001). See Figure 4A-B.

What about domain-general regions, that were defined based on responses to visual
information (V1 and MT) or to a spatial working memory task (MD regions), with no reference to
domain information? We found that these regions’ responses were reliable for both domain and
event contrasts, in both Experiments 1 and 2. Across these regions, the domain effect
(psychology vs physics) for expected events strongly predicted the domain effect for unexpected
events (Exp 1: r = 0.892, p < .001; Exp 2: r = 0.739, p < .001). In addition, the psychology event
effect (unexpected vs expected) positively predicted the physical event effect (Exp 1: r = 0.478,
p = 0.021; Exp 2: r = 0.377, p = 0.063). Like in domain-specific regions, the reliability of domain
information was greater than the reliability of event information (bootstrapped difference in
correlations; Exp 1: (95% CI [0.084, 0.558], p =.004); Exp 2: 95% CI [0.268, 0.989], p < .001).
See Figure 4C-D.

Multivariate tests of event and domain information
In addition to these univariate analyses, we pre-registered and conducted a series of
multivariate pattern analyses (MVPA). We tested whether any of our focal regions contained
distinct patterns of activity for unexpected vs expected events (and if so, whether these patterns
were domain-specific or domain-general). By contrast to the univariate results, we found no
evidence for a consistent spatial pattern distinguishing unexpected vs expected events in any
region, and at the same time, strong evidence for consistent spatial patterns distinguishing
between domains in many of our focal regions. This null result held even though we used
Euclidean distance as the distance metric, which incorporates differences in response
magnitude. The dissociation between univariate and multivariate information was unexpected to
us; we will speculate about possible implications of this result in the General Discussion. The full
multivariate results are presented in the SI.

Figure 5. Stimuli from the domain of intuitive psychology, wherein the actions of an agent
revealed a surprising physical outcome in the surrounding environment
(psychology-environment). In agent-solidity, an agent passes through a solid wall; in
infer-constraint, an obstacle that explains an agent's action is missing.
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VOE towards physically surprising outcomes, revealed by an agent
In our primary analyses, reported above, we studied neural responses to surprising actions
(psychology-action events). How do our focal domain-specific and domain-general regions
respond to surprising events involving both agents and objects (psychology-environment
scenarios, Figure 1C), wherein a physical outcome is rendered surprising in light of an agent’s
action? To ask this question, in exploratory analyses we modeled the responses of all the focal
regions in the 4 psychology-environment expected and unexpected scenarios. When restricting
the analysis to data from the first 2 runs, like in our confirmatory analyses in psychology-action
and physics events, the only focal ROI that showed a VOE effect was the right STS ([0.095,
0.542], B = 0.319, p = 0.006, two-tailed, d = 0.576, BF = 1.156).

Further exploratory analyses over all runs of the experiment suggested that many focal ROIs
showed strong VOE effects towards these stimuli across runs, including domain-specific physics
ROIs (left SMG: [0.229, 0.469], B = 0.349, p < .001, two-tailed, d = 0.492, BF > 1000; right
SMG: [0.156, 0.415], B = 0.285, p < .001, two-tailed, d = 0.372, BF = 65.936), a domain-specific
psychology ROI (right STS: [0.159, 0.342], B = 0.25, p < .001, two-tailed, d = 0.462, BF > 1000)
and MD ROIs (APC: [0.034, 0.293], B = 0.163, p = 0.014, two-tailed, d = 0.213, BF = 0.146;
RFC: [0.079, 0.34], B = 0.209, p = 0.002, two-tailed, d = 0.271, BF = 0.934), though not early
visual regions (bilateral V1: [-0.064, 0.203], B = 0.07, p = 0.306, two-tailed, d = 0.088, BF =
0.012; bilateral MT: [-0.009, 0.175], B = 0.083, p = 0.078, two-tailed, d = 0.152, BF = 0.023), nor
left STS ([-0.084, 0.209], B = 0.063, p = 0.404, two-tailed, d = 0.072, BF = 0.011). These effects
were spatially consistent across participants, appearing in the SMG and STS in whole-brain
random effects analyses. See Figure S11.

General Discussion
Why do infants look when a ball (apparently) passes through a solid wall? The underlying
mental processes that guide looking to events like these remain controversial, despite decades
of behavioral studies. Thus in the current work, we used the tools of cognitive neuroscience to
directly and simultaneously examine these mental processes, albeit in adults. We localized the
brain regions in individual adult participants that support domain-specific and domain-general
processes hypothesized to account for VOE (domain-specific psychological and physical
reasoning, domain-general visual prediction error, and domain-general task-driven attention),
and tested which of these processes show a corresponding neural VOE effect for stimuli from
classic infant experiments. Overall, we found evidence that unexpected events in these stimuli
(i) did not evoke processes similar to early-stage visual processing, (ii) evoked processes similar
to endogenous goal-driven attention, and (iii) for physical events, evoked domain-specific
distinctively physical processing, in adult brains.

Before we discuss our positive findings, let us consider the implications of our negative findings
from early visual regions. We found no evidence for the hypothesis that VOE stimuli evoke
responses associated with visual processing of novel visual features. Primary visual cortex (V1)
and motion-sensitive area (MT), did not respond more to unexpected than expected VOE
events: The voxels that, in individual participants, were maximally responsive to visual stimuli (in
V1) or to coherent motion (in MT), responded equally to unexpected and expected scenarios,
regardless of domain. This result provides some evidence against the hypothesis that
unexpected events in infant studies attract attention merely because they contain an array of
novel low-level visual features (11, 12), because V1 and MT should be sensitive to exactly these
features.
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Next, we consider the implications of the findings from domain-specific physical and
psychological regions, and domain-general multiple demand regions, for VOE in adults.

Violations of physical expectations
What happens in the minds and brains of adults when they see a violation of object support,
solidity, or permanence? Prior research proposes that adults possess a system for ‘intuitive
physics’ (64): a capacity to represent the visual world in terms of the objects and surfaces in it,
including inductive biases that objects are permanent and solid, that allows adults to form
expectations about what will happen next, and to detect deviations from those expectations.
Prior work suggests both a distinctive neural source of these capacities (33–35), as well as early
emergence in infant behavior (10). The current results suggest that when adults see a physically
surprising event, it evokes both a prediction error within that system for intuitive physics
(supported by the frontoparietal physics network, including the SMG), and also a
domain-general orienting response towards that event (supported by multiple demand regions,
including the APC and RFC).

Whereas in behavioral research, domain-general and domain-specific contributions to the VOE
effect are difficult to separate, neuroimaging allowed us to identify both domain-specific and
domain-general correlates of the VOE effect simultaneously. Having found evidence for both
processes, many questions follow. One question is whether physical prediction error is initially
calculated in one region, and passed to the other(s), and if so in which direction. Does a
physical prediction error signal arise initially in LSMG, which is then read out by RFC or APC?
Or does the LSMG pass physically relevant information to MD regions, and then receive a
signal of physical prediction error from these regions? These questions are best addressed
using neuroimaging techniques with good temporal resolution, like electroencephalography
(EEG) and magnetoencephalography (MEG).

Another question is whether the neural population code for unexpectedness in MD regions, like
RFC and APC, is truly domain-general. When we measured the reliability of domain and event
univariate responses in domain-general regions, we found that across 24 regions, the strength
of an MD region’s VOE effect generalized (albeit weakly) across domains. However, we could
not test whether the pattern of response to physically unexpected events could be used to
decode psychologically surprising events, or vice versa, because we could not measure reliable
spatial patterns distinguishing expected versus unexpected events. By contrast, there were
consistent patterns of information distinguishing the physical and psychological events, both
within and across event types, in many regions (see SI for details). In sum, unexpected events
led to greater activity in MD regions, but not in a consistent spatially structured manner. In this
way, our results are consistent with prior evidence that prediction error increases response
magnitude but reduces population code precision (65, 66). If this interpretation is true, then
MVPA cannot be used to test hypotheses about the representations underlying VOE responses,
at least the way they are conceptualized in the current research.

What can we infer or predict about infant brains, given these findings from adults? Studying the
brains of adults to evaluate hypotheses about neural function and behavior in infants has both
strengths and limitations. One strength was that studying adults allowed us to be more confident
about the functions of the regions we studied, by using validated localizer tasks that targeted
each candidate mental process underlying VOE. This design was possible because adults can
tolerate long scans and can be instructed to perform tasks in the scanner. It is much harder to
design and run localizer tasks in infants, but without localizers, reverse inference over functional
activation alone is not straightforward (55, 56) (e.g. in the APC and SMG, which occupy
approximately the same cortical territory on average, but are spatially and functionally distinct in
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individual adult participants; see SI). In our experimental design, we prioritized stimuli and
procedures that exactly correspond to prior studies of infants. A weakness of this strategy was
that these may have not been the ideal conditions for maximizing adult engagement: adults’
neural VOE effect quickly habituated over just a few experimental runs (see SI for details).

Prior neuroimaging studies suggest that infants have similar organization of large-scale cortical
networks, as well as similar cortical responses evoked by agents and objects, to those of adults
(36, 39, 57, 58, 67–69). Thus we speculate that all the focal regions we studied in adults are
present in approximately the same locations, and functional, in infants under one year of age.
Most relevantly, work using near-infrared spectroscopy in 5- to 7-month-old infants reported
increases in activity in parietal cortex when infants saw objects move in a discontinuous path, or
change speed (38). If multiple demand and frontoparietal physics regions could be interrogated
separately and studied in infant brains, then we predict that violations of physical expectations
would evoke activity in domain-specific and domain-general regions in infants, just as in adults,
and that both would contribute to infant looking behavior in VOE studies.

Violations of psychological expectations
How do the human adult mind and brain respond to deviations from efficient or goal-directed
action? In addition to capacities for physical understanding, prior research shows that adults
have an intuitive theory of rational action (70): a capacity to represent people as agents with
mental states who plan intentional actions at a cost to themselves, which allows adults to predict
and explain other agents’ behaviors. These capacities emerge in infancy (6, 9), and are likely
supported by cortical regions involved in action processing (71).

In the current study, apparently irrational actions evoked increased activity in regions localized
by endogenous attention, suggesting that psychological prediction error, like physical prediction
error, leads to a domain-general orienting response. However, the existence of domain-specific
prediction error, and the role of the STS, were less clear. In our study, STS responded to the
actions of agents, consistent with the social functions of the superior temporal sulcus (27–32).
However, evidence of social prediction error in the STS was less conclusive. Prior literature is
similarly mixed, with some researchers finding activation in the STS for violations of rational
action (31, 32, 41, 72, 73), and others finding activation in frontoparietal regions that could
reflect the same responses we measured in APC and RFC (40–42). Thus, while the STS is
likely involved in the processing of social information more broadly, it is unclear how the STS is
involved in expressing an intuitive theory of action, including prediction error over that theory, in
particular. One possibility is that the STS does encode prediction errors over action, but shows a
more sustained response for action outcomes that are harder to explain away (e.g from prior
work, when a person opens a door with her knee, even though her hands are free (73); a
person expressing disgust at an object, and then reaching for it (31)), whereas the actions we
tested here and in prior work (42) were much simpler (someone changing their mind about
which object to pursue; someone acting inefficiently) and easier to explain away, and thus led to
a smaller STS VOE response.

As early as can be measured, activity in the superior temporal cortex is evoked by social stimuli
in infants as well as adults, responding to faces (36, 74), actions (75), and social interactions
(76–78). But, like in adults, infant STS may not encode action prediction errors during simple
scenes involving violations of rational action. In one near-infrared spectroscopy (NIRS) study
with 9-month-old infants, Southgate et al. (2014) (40) measured responses from the temporal
and parietal cortex while infants watched an animated agent move towards one object, and then
move towards the same object in a new location or move towards the same location, now
occupied by a new object, much like our goals task. They found that two contiguous channels
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over the left anterior parietal cortex responded to changes in an agent’s goals; no other
contiguous channels showed a similar response. Based on these observations, we predict that
infant looking to VOE events involving surprising actions will reflect both domain-specific and
domain-general neural sources, though it is an open question whether the STS in infants
encodes these prediction errors.

Distinct and shared representations from intuitive physics and psychology
Our study found evidence supporting the broad division between the physical and psychological
domains in the human brain. First, many of the 42 regions we studied preferentially responded
to events involving agents or objects; this was true both for domain-specific regions we defined
based on a social versus physical contrast, and also for domain-general multiple demand
regions we defined based on spatial working memory (Figure 4A, 4C). Furthermore, we found
that in domain-specific regions, VOE effect sizes tended to trade off between domains: Regions
that tended to show a VOE effect in one domain tended not to show that effect in the opposite
domain.

However, in some ways, our results also highlight the interactions between these two domains.
First, physical outcomes that were surprising in light of observed actions evoked activity in both
psychological and physical ROIs. These events plausibly required computations from both
domains. It is not surprising, by itself, to see an agent move on a straight path, but it is
surprising if that path is through a solid object. It is not surprising, by itself, to see an occluder
reveal empty space, but it is surprising if an obstacle, implied by an agent’s action, is not there.
We suggest that computations from both domains are necessary for adults and infants to make
sense of these events.

Because agents have physical bodies, act in a physical world, and their plans reflect information
about that world, adults’ and infants’ understanding of even simple actions may require the
integration of computations between physical and psychological domains. For example,
representing the efficiency of an action may require first representing the agent and obstacle as
solid bodies, and the agent as a body that can generate force against gravity. The best
computational models of how infants understand other people’s goal-directed actions contain a
joint model for action planning and physical simulation (1). While we have followed a long
tradition, from both cognitive neuroscience and developmental psychology, of studying intuitive
psychology and physics as contrasting domains, our imposed labels may be obscuring common
or linked representations that organize the functions of domain-specific regions like the STS and
SMG. Future work could explicitly link the representations from computational models of early
intuitive psychology and physics to neural responses to better understand our capacity to
reason about agents acting in a physical world.
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Methods

Open science practices
The methods and analyses of these experiments were pre-registered prior to data collection,
including several updates. Our pre-registration documents, openly available at
https://osf.io/sa7jy/registrations, detail all decisions and updates and the status of data collection
and analysis. All experiment scripts, including stimuli shown to participants, as well as the data
and analysis scripts required to reproduce statistical results, can be found at https://osf.io/sa7jy/.
De-faced brain images from participants in Experiments 1 and 2 who consented to share them
(N = 16 for Exp 1; N = 29 for Exp 2) will be shared on OpenNeuro prior to the publication of this
paper.

Participants
We recruited 20 participants (Mean age = 25.1y, range = 19-45; 17 right-handed; 15 female, 5
male; 10 White; 10 Black, Asian, or Latine) for Experiment 1, and 33 participants (Mean age =
25.7y, range 18-45; 30 right-handed; 21 female, 12 male; 19 White; 14 Black, Asian, Latine, or
multiracial) for Experiment 2, all from the Boston area. Two participants were excluded from
Experiment 1 due to technical issues. One participant each was excluded from Experiment 1
and Experiment 2 for not contributing usable, low-motion fMRI data. This left a final sample of
N=17 for Experiment 1, and N=32 for Experiment 2. Participants had normal or
corrected-to-normal vision and no MRI contraindications. We chose the sample size for
Experiment 2 using a combination of simulation power analyses over Experiment 1 (see
pre-registration for details), and other considerations of time and cost. All study procedures
were approved by the MIT Committee on the Use of Human Subjects. Participants were asked
to provide written informed consent before participation, and were paid $30 per hour.

Data acquisition
For full scanner protocols for both experiments, please see our pre-registration documents at
https://osf.io/sa7jy/. In brief, for both experiments, neuroimaging data were acquired from a
3-Tesla Siemens Magnetom Prisma scanner located at the Athinoula A. Martinos Imaging
Center at the McGovern Institute at MIT, using the standard 32-channel head coil. Participants
viewed stimuli projected to a 12” x 16” screen behind the scanner, at a visual angle of
approximately 14 x 19 degrees, through a mirror. Participants underwent an anatomical scout
scan (auto-align, acquired in 128 sagittal slices with 1.6mm isotropic voxels, used to identify key
anatomical landmarks and position the bounding box for subsequent anatomical and functional
scans; TA=0.14; TR=3.15ms; FOV=260mm), and a high-resolution MPRAGE anatomical scan
(T1-weighted structural images acquired in 176 interleaved sagittal slices with 1.0mm isotropic
voxels, TA=5:53, TR=2530.0ms; FOV=256mm, GRAPPA parallel imaging, acceleration factor of
2).

In Experiment 1, participants underwent 6 runs of functional scans (gradient-echo EPI sequence
sensitive to Blood Oxygenation Level Dependent (BOLD) contrast in 3mm isotropic voxels in 46
interleaved near-axial slices covering the whole brain; EPI factor=70, TR=2s, TE=30.0ms, flip
angle=90 degrees, FOV=210mm). Two of these runs were dedicated to the DOTS localizer
task. The remaining 4 runs were dedicated to our primary VOE task of interest. In total, the
scanning session lasted about 60 minutes.

In Experiment 2, participants underwent 10 runs of functional scans (gradient-echo EPI
sequence sensitive to Blood Oxygenation Level Dependent (BOLD) contrast in 3mm isotropic
voxels in 50 interleaved near-axial slices covering the whole brain; EPI factor=70; TR=2s;
TE=30.0ms; flip angle=90 degrees; FOV=210mm). Six of these runs were dedicated to our 3
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localizer tasks, two runs apiece. The remaining 4 runs were dedicated to our primary VOE task
of interest. In total, the scanning session lasted about 90 minutes.

Overview of preprocessing and analysis of brain images
A detailed description of our neuroimaging analysis pipeline can be found in the SI. In brief, data
were preprocessed using fMRIPrep (79), which included brain extraction, tissue segmentation,
co-registration to MNI space, motion correction, and confound estimation. The preprocessed
BOLD images were analyzed using custom lab scripts using custom scripts, which included
run-level exclusion based on motion, first and second level modeling, and whole brain analysis.
During run-level modeling, all regressors other than head movement parameters were
convolved with a standard double-gamma hemodynamic response function, with a high pass
filter applied to both the data and the model. Event regressors were defined as a boxcar from
the start and end of each block (localizer tasks) or event (VOE task). These first-level general
linear models (GLMs) were then passed to subject-level and group-level analyses.

Localizer tasks
Social versus physical interaction (DOTSloc)
The DOTSloc task (35) reliably evokes responses in the superior temporal sulcus (STS) and
supramarginal gyrus (SMG) (ROIs for psychological and physical prediction). Stimuli consisted
of 32 unique 10-s movies of two dots moving as though they are physical objects, or as though
they are interacting socially. Participants watched the dots, imagined the trajectory of one of the
dots when it disappeared briefly, and indicated whether the final position of the hidden dot
matches what they imagined using a button press. Each run included 19 blocks (8 physical
blocks, 8 social blocks, and 3 rest blocks). On social and physical blocks, participants saw two
different videos from the corresponding condition. Participants saw two runs, except for two
participants in Exp 2 who only underwent one run due to time restrictions. Each run lasted
approximately 8.2 minutes. This task was also used to define the V1 ROIs in Experiment 1.

Spatial working memory (spWMloc)
The spWMloc task (48), openly available at https://evlab.mit.edu/funcloc/, identifies regions in
the multiple demand (MD) network, including bilateral anterior parietal cortex, and right frontal
cortex (ROIs for goal-driven attention). Stimuli were rectangular 8-by-8 grids. Participants saw a
sequence of grid-squares change color, either one (easy condition) or two (hard condition) at a
time. They were asked to remember the locations of the changing squares over the sequence,
and indicated using a button press which of two alternative grids matched the resulting layout,
with feedback. Participants saw two runs, except for one participant in Exp 2 who only
underwent one run due to time restrictions. Each run included 20 16-second blocks (6 easy, 6
hard, and 4 rest blocks), and lasted approximately 7.5 minutes. This task was also used to
define the V1 ROI in Experiment 2.

Motion (motionLoc)
The motionLoc task (54) identifies motion-sensitive regions (MT) (ROI for early visual
processing). This task contrasts coherent vs random dot motion to enable the identification of
motion-sensitive voxels. Participants fixated on a red dot near the bottom center of the screen
while a large circular space of small moving dots played above fixation. The dots either moved
coherently (in a uniform direction) or randomly around the space. Participants pressed a button
whenever the red dot flickered. Participants saw two runs, except for two participants in Exp 2
who only underwent one run due to time restrictions. Each run lasted approximately 4.6
minutes.
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Primary VOE task: Experiment 1
Each VOE run had an event-related design: 8 trials (2 apiece of the solidity, support, goal, and
efficiency scenarios), with jittered fixation/attention check periods of 3, 5, or 7 seconds in
between each trial, and then a final rest period, lasting a total of approximately 8.0 minutes. All
participants saw 4 runs. Each trial had 3 parts: a familiarization movie followed by two test
movies presented in random order (expected and unexpected). All movies lasted 6s with a
250ms interstimulus interval, and each movie played twice in a row each time it was presented,
followed by a jittered fixation/attention check. Participants were asked simply to pay attention to
the movies. During the fixation period, participants pressed a button if the fixation cross was the
letter X instead of a plus symbol (+) (33% of trials). The stimuli flipped horizontally for half of the
trials to introduce minor visual variability across the run.

Primary VOE task: Experiment 2
Each VOE run had an event-related design: a 10s rest period, 16 trials (6 physics, 6
psychology-action, and 4 psychology-environment), and then a final 10s rest period, lasting a
total period of approximately 7.0 minutes. All participants saw four runs, except for one
participant in Exp 2 who only underwent three runs due to time restrictions. Each trial had 4
parts: a familiarization movie (7.5s), a corresponding test movie (7.5s; either unexpected or
expected), each followed by a 250ms interstimulus interval, a fixation cross for a jittered
duration of 4-10s, and an attention check (2s). Participants were asked to pay attention to the
movies. During the attention check, they saw an image of an agent, object, or surface texture,
and responded via button press to indicate whether that image appeared in the most recent trial.
In anticipation that we may need to restrict our analysis to the first 2 runs, scenarios were split
into two halves, one half assigned to runs 1-2 and the other assigned to runs 3-4, so that
analyses over the first two runs would be conducted on the same stimuli across participants. We
generated 128 unique random event sequences, one per run per participant, such that every
run contained 8 unexpected and expected trials apiece, and the same number of physics (6),
psychology-action (6), and psychology-environment (4) trials, and across sequences, each
scenario appeared in each possible position within a trial an equal number of times.

Subject-specific functional region of interest (ssfROI) analysis
All of our primary analyses relied on the subject-specific functional region of interest (ssfROI)
approach (80). The goal of this approach was to find, in individual participants, voxels that are
maximally engaged during each of our hypothesized cognitive processes — social and physical
prediction (identified using the DOTSloc task), early visual processing (identified using the
motionLoc task), and goal-directed attention (identified using the spWMloc task) — while
allowing the stereotactic location of the voxels selected to vary across people according to their
unique neuroanatomy and functional organization. In Experiment 1, ssfROIs for domain-specific
regions were identified using the social vs physical interaction contrasts from the DOTSloc task,
ssfROIs for MD regions were identified using the unexpected > expected contrast from runs 2-4
of the VOE task, and early visual ROIs were identified using the stimuli > rest contrast from the
DOTSloc task. In Experiment 2, ssfROIs for domain-specific regions were identified using the
social vs physical interaction contrast from the DOTSloc task, the MD ROIs were identified using
the hard > easy contrast from the spWMloc task, MT was identified using the coherent >
incoherent motion contrast in the motionLoc task, and V1 was identified using the stimuli > rest
contrast from the spWM task. For both experiments, for each region, for each participant, we
selected the top 100 voxels (i.e., those with the highest z values) for the contrasts (listed in
Figure 2B) within the corresponding fROI parcel. See SI for details about region selection and
specification.
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Then, we studied the responses in these 100 voxels to our primary VOE task in a set of 8 focal
regions (see SI for more information about region selection and identification). For both
Experiments 1-2, we focused on the unexpected and expected test events from physical
scenarios and psychological scenarios involving surprising actions (physics and
psychology-action; Figure 1A-B). In exploratory analyses for Experiment 2, we studied the
responses of these regions to surprising physical outcomes revealed by an agent’s actions
(psychology-environment; Figure 5). For exploratory analyses across all domain-specific and
domain-general regions, we used Bonferroni-corrected thresholds to account for the number of
regions we explored (for 24 domain-general regions, α = .05/24 = .002; for 18 domain-specific
regions, α = .05/18 = .003).

Statistical modeling of ROI data, Experiments 1-2
For our univariate focal region analysis, we modeled the average response per region as
predicted by a main effect of domain, a main effect of event, and the interaction across them.
Model formula: meanbeta ~ domain * event + (1|subjectID). Full regression tables for all
analyses are available in the SI. Our significance threshold for these analyses was α = .025,
two-tailed (correcting for 2 regions per ROI type).

Univariate region-by-region analysis
In this analysis, we took the univariate results from 18 domain-specific and 24 domain-general
regions (22 for Experiment 1; excluding left and right MT), and asked whether the responses
across domain-specific regions and domain-general regions are organized by domain, event, or
both. The voxel selection procedure was identical to the univariate analyses, except that we
selected the top 100 voxels from each region in each hemisphere (e.g. left and right APC, rather
than bilateral APC), to maximize the number of regions available as input. For each region, we
computed four effect sizes (Cohen’s D): the magnitude of the domain effect for expected events,
and separately for unexpected events (d_domain_expected; d_domain_unexpected), and the
magnitude of the event effect for psychology-action events, and separately for physis events
(d_event_psychology; d_event_physics). For Experiment 2, these effects were extracted from
models that controlled for low-level visual features. Originally, we pre-registered this analysis
over multivariate effect sizes, rather than univariate effect sizes reported here. However, due to
the lack of reliable multivariate information about events, even within domains (despite clear
univariate effects), we felt that we could no longer strongly interpret these results. We report the
results of this pre-registered analysis in full in the SI.

We found in Experiment 1, and hypothesized and found in Experiment 2, that patterns of activity
across domain-specific regions and domain-general regions will be organized more by domain
than by event. To test this hypothesis, we calculated a correlation value, using a nonparametric
test of independence, which uses permutation to test the null hypothesis that two vectors are
statistically independent, but not assume the linearity of their dependence. For each set of
regions, we calculated a correlation value relating information about domains across events,
across regions (r_domain = cor(d_domain_expected, d_domain_unexpected)), and a second
correlation value relating information about events across domains, across regions (r_event =
cor(d_event_psychology, d_event_physics). To test the hypotheses that (i) r_domain will be
larger than expected by chance, and that (ii) r_domain will be larger than r_event, we computed
the bootstrapped difference between these two values under the null hypothesis (4000
iterations). The p-value was the proportion of bootstrapped observations that were equal to or
greater than (i) the empirical r_domain, and (ii) the empirical difference between r_domain and
r_event. Our significance threshold was α = .05, one-tailed.
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Supplemental figures

Figure S1. Sensitivity of (A) event effects (unexpected > expected), (B) the domain x event
interaction (unexpected > expected, greater for physics than psychology), and (C) domain
effects (physics > psychology) across experimental runs and ROI size (10-300 voxels), in the
psychology-action and physics events of Experiments 1 and 2. Event effects across runs from
bilateral APC and right FC are not shown for Experiment 1, because the VOE data used to
choose the ROIs were from runs 2-4, and are thus non-independent from the runs 2-4 results.
For all other regions, the data used to select the ROIs were independent of the data extracted
from the ROIs.
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Figure S2. Sensitivity of event effects (unexpected > expected) over experimental runs and ROI
size (10-300 voxels) in psychology-environment events of Experiment 2.

Figure S3. Dice’s Coefficient (DC) between each subject’s APC ROI and SMG ROIs from
Experiment 2. The leftmost boxplot shows DC between bilateral APC and left and right SMG,
our pre-registered ROIs. The remaining boxplots show DC between the left SMG and left APC
(center), and between right SMG and right APC (right). The median DC for all three plots is 0.
The mean DC is plotted in red (< .1 for all ROIs and < .05 for the pre-registered bilateral APC
ROI).
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Figure S4. Boxplot of stimulus features, normalized across all videos per feature, (A) for each
event type, and (B) for each domain. Each dot represents one video. Panels from left to right:
stimulus contrast, curvilinearity, high spatial frequency, low spatial frequency, luminance, motion,
rectilinearity.
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1. Behavioral ratings for stimuli

Figure S5. Behavioral ratings (“How surprising?” 0: “Not at all” to 100: “Extremely”) from test
events in the AGENT (A-B, E-F) and ADEPT (C, G) datasets. Each dot indicates the average
behavioral rating per scenario, rated by 8-10 people, grouped by domain (top row) or task
(bottom row). Separate groups of people rated expected and unexpected test events from each
scenario. (D-H) Effect sizes for the VOE effect (unexpected vs expected ratings), per task (H),
and per domain (D).

In prior research, Smith et al (2019, ADEPT) and Shu et al. (2021, AGENT) showed adult
participants (Smith et al. N = 60 total, 8 ratings per scenario; Shu et al. N = 200 total, 10 ratings
per scenario) a large set of procedurally generated videos based on behavioral infant studies, a
subset of which we scanned in the current paper. In these behavioral studies, adult participants
saw a familiarization and test event (combined into a single event, for Smith et al.; shown as two
separate events, for Shu et al), and rated how surprising each test event was on a scale of 0 to
100, with 0 indicating “not at all surprising” and 100 indicating “extremely surprising”, with pairs
of events presented in shuffled order, just like in our fMRI experiment.

In these behavioral studies, people from the behavioral studies never saw expected and
unexpected outcomes from the same scenario. Furthermore, people saw only physics videos
(ADEPT dataset), or only psychology-action and psychology-environment videos (AGENT data);
these two datasets were collected separately. In our fMRI experiment, participants saw trials
from both datasets, and saw both outcomes for each scenario, either immediately following
each other (Exp 1), or in a separate run of the experiment (Exp 2).

Given the average ratings for each video scenario, we computed an effect size for the VOE
effect (unexpected vs expected ratings) for each domain and task. We found large (d > 2)
behavioral VOE effects for all tasks and domains. Notably, stimuli from the three domains were
rated around equally surprising, with similar effect sizes; this suggests that any difference in
neural VOE responses between domains cannot merely be explained by aggregate differences
in how surprising events were across domains.
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2.1 Preprocessing, Experiment 1
Results included in this manuscript come from preprocessing performed using fMRIPprep 1.2.6
(Esteban, Markiewicz, et al. (2018); Esteban, Blair, et al. (2018); RRID:SCR_016216), which is
based on Nipype 1.1.7 (Gorgolewski et al. (2011); Gorgolewski et al. (2018);
RRID:SCR_002502).

Anatomical data preprocessing
The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) using
N4BiasFieldCorrection (Tustison et al. 2010, ANTs 2.2.0), and used as T1w-reference
throughout the workflow. The T1w-reference was then skull-stripped using
antsBrainExtraction.sh (ANTs 2.2.0), using OASIS as target template. Brain surfaces were
reconstructed using recon-all (FreeSurfer 6.0.1, RRID:SCR_001847, Dale, Fischl, and
Sereno 1999), and the brain mask estimated previously was refined with a custom variation of
the method to reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical
gray-matter of Mindboggle (RRID:SCR_002438, Klein et al. 2017). Spatial normalization to the
ICBM 152 Nonlinear Asymmetrical template version 2009c (Fonov et al. 2009,
RRID:SCR_008796) was performed through nonlinear registration with antsRegistration
(ANTs 2.2.0, RRID:SCR_004757, Avants et al. 2008), using brain-extracted versions of both
T1w volume and template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter
(WM) and gray-matter (GM) was performed on the brain-extracted T1w using fast (FSL 5.0.9,
RRID:SCR_002823, Zhang, Brady, and Smith 2001).

Functional data preprocessing
For each of the 18 BOLD runs found per subject (across all tasks and sessions), the following
preprocessing was performed. First, a reference volume and its skull-stripped version were
generated using a custom methodology of fMRIPrep. The BOLD reference was then
co-registered to the T1w reference using bbregister (FreeSurfer) which implements
boundary-based registration (Greve and Fischl 2009). Co-registration was configured with nine
degrees of freedom to account for distortions remaining in the BOLD reference. Head-motion
parameters with respect to the BOLD reference (transformation matrices, and six corresponding
rotation and translation parameters) are estimated before any spatiotemporal filtering using
mcflirt (FSL 5.0.9, Jenkinson et al. 2002). The BOLD time-series, were resampled to surfaces
on the following spaces: fsaverage5. The BOLD time-series (including slice-timing correction
when applied) were resampled onto their original, native space by applying a single, composite
transform to correct for head-motion and susceptibility distortions. These resampled BOLD
time-series will be referred to as preprocessed BOLD in original space, or just preprocessed
BOLD. First, a reference volume and its skull-stripped version were generated using a custom
methodology of fMRIPrep. Automatic removal of motion artifacts using independent component
analysis (ICA-AROMA, Pruim et al. 2015) was performed on the preprocessed BOLD on MNI
space time-series after removal of non-steady state volumes and spatial smoothing with an
isotropic, Gaussian kernel of 6mm FWHM (full-width half-maximum). Corresponding
“non-aggresively” denoised runs were produced after such smoothing. Additionally, the
“aggressive” noise-regressors were collected and placed in the corresponding confounds file.
The BOLD time-series were resampled to MNI152NLin2009cAsym standard space, generating
a preprocessed BOLD run in MNI152NLin2009cAsym space. First, a reference volume and its
skull-stripped version were generated using a custom methodology of fMRIPrep. Several
confounding time-series were calculated based on the preprocessed BOLD: framewise
displacement (FD), DVARS and three region-wise global signals. FD and DVARS are calculated
for each functional run, both using their implementations in Nipype (following the definitions by
Power et al. 2014). The three global signals are extracted within the CSF, the WM, and the
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whole-brain masks. Additionally, a set of physiological regressors were extracted to allow for
component-based noise correction (CompCor, Behzadi et al. 2007). Principal components are
estimated after high-pass filtering the preprocessed BOLD time-series (using a discrete cosine
filter with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical
(aCompCor). Six tCompCor components are then calculated from the top 5% variable voxels
within a mask covering the subcortical regions. This subcortical mask is obtained by heavily
eroding the brain mask, which ensures it does not include cortical GM regions. For aCompCor,
six components are calculated within the intersection of the aforementioned mask and the union
of CSF and WM masks calculated in T1w space, after their projection to the native space of
each functional run (using the inverse BOLD-to-T1w transformation). The head-motion
estimates calculated in the correction step were also placed within the corresponding confounds
file. All resamplings can be performed with a single interpolation step by composing all the
pertinent transformations (i.e. head-motion transform matrices, susceptibility distortion
correction when available, and co-registrations to anatomical and template spaces). Gridded
(volumetric) resamplings were performed using antsApplyTransforms (ANTs), configured with
Lanczos interpolation to minimize the smoothing effects of other kernels (Lanczos 1964).
Non-gridded (surface) resamplings were performed using mri_vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn 0.5.0 (Abraham et al. 2014,
RRID:SCR_001362), mostly within the functional processing workflow. For more details of the
pipeline, see the section corresponding to workflows in fMRIPrep’s documentation.

Copyright Waiver
The above boilerplate text was automatically generated by fMRIPrep with the express intention
that users should copy and paste this text into their manuscripts unchanged. It is released under
the CC0 license.
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2.2 Preprocessing, Experiment 2
Results included in this manuscript come from preprocessing performed using fMRIPrep 22.0.2
(Esteban, Markiewicz, et al. (2018); Esteban, Blair, et al. (2018); RRID:SCR_016216), which is
based on Nipype 1.8.5 (K. Gorgolewski et al. (2011); K. J. Gorgolewski et al. (2018);
RRID:SCR_002502).

Anatomical data preprocessing
A total of 1 T1-weighted (T1w) images were found within the input BIDS dataset.The
T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) with
N4BiasFieldCorrection (Tustison et al. 2010), distributed with ANTs 2.3.3 (Avants et al. 2008,
RRID:SCR_004757), and used as T1w-reference throughout the workflow. The T1w-reference
was then skull-stripped with a Nipype implementation of the antsBrainExtraction.sh
workflow (from ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of
cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the
brain-extracted T1w using fast (FSL 6.0.5.1:57b01774, RRID:SCR_002823, Zhang, Brady, and
Smith 2001). Brain surfaces were reconstructed using recon-all (FreeSurfer 7.2.0,
RRID:SCR_001847, Dale, Fischl, and Sereno 1999), and the brain mask estimated previously
was refined with a custom variation of the method to reconcile ANTs-derived and
FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle
(RRID:SCR_002438, Klein et al. 2017). Volume-based spatial normalization to two standard
spaces (MNI152NLin2009cAsym, MNI152NLin6Asym) was performed through nonlinear
registration with antsRegistration (ANTs 2.3.3), using brain-extracted versions of both T1w
reference and the T1w template. The following templates were selected for spatial
normalization: ICBM 152 Nonlinear Asymmetrical template version 2009c [Fonov et al. (2009),
RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym], FSL’s MNI ICBM 152
non-linear 6th Generation Asymmetric Average Brain Stereotaxic Registration Model [Evans et
al. (2012), RRID:SCR_002823; TemplateFlow ID: MNI152NLin6Asym].

Functional data preprocessing
For each of the 10 BOLD runs found per subject (across all tasks and sessions), the following
preprocessing was performed. First, a reference volume and its skull-stripped version were
generated using a custom methodology of fMRIPrep. Head-motion parameters with respect to
the BOLD reference (transformation matrices, and six corresponding rotation and translation
parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL
6.0.5.1:57b01774, Jenkinson et al. 2002). BOLD runs were slice-time corrected to 0.95s (0.5 of
slice acquisition range 0s-1.9s) using 3dTshift from AFNI (Cox and Hyde 1997,
RRID:SCR_005927). The BOLD time-series (including slice-timing correction when applied)
were resampled onto their original, native space by applying the transforms to correct for
head-motion. These resampled BOLD time-series will be referred to as preprocessed BOLD in
original space, or just preprocessed BOLD. The BOLD reference was then co-registered to the
T1w reference using bbregister (FreeSurfer) which implements boundary-based registration
(Greve and Fischl 2009). Co-registration was configured with six degrees of freedom. Several
confounding time-series were calculated based on the preprocessed BOLD: framewise
displacement (FD), DVARS and three region-wise global signals. FD was computed using two
formulations following Power (absolute sum of relative motions, Power et al. (2014)) and
Jenkinson (relative root mean square displacement between affines, Jenkinson et al. (2002)).
FD and DVARS are calculated for each functional run, both using their implementations in
Nipype (following the definitions by Power et al. 2014). The three global signals are extracted
within the CSF, the WM, and the whole-brain masks. Additionally, a set of physiological
regressors were extracted to allow for component-based noise correction (CompCor, Behzadi et
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al. 2007). Principal components are estimated after high-pass filtering the preprocessed BOLD
time-series (using a discrete cosine filter with 128s cut-off) for the two CompCor variants:
temporal (tCompCor) and anatomical (aCompCor). tCompCor components are then calculated
from the top 2% variable voxels within the brain mask. For aCompCor, three probabilistic masks
(CSF, WM and combined CSF+WM) are generated in anatomical space. The implementation
differs from that of Behzadi et al. in that instead of eroding the masks by 2 pixels on BOLD
space, a mask of pixels that likely contain a volume fraction of GM is subtracted from the
aCompCor masks. This mask is obtained by dilating a GM mask extracted from the FreeSurfer’s
aseg segmentation, and it ensures components are not extracted from voxels containing a
minimal fraction of GM. Finally, these masks are resampled into BOLD space and binarized by
thresholding at 0.99 (as in the original implementation). Components are also calculated
separately within the WM and CSF masks. For each CompCor decomposition, the k
components with the largest singular values are retained, such that the retained components’
time series are sufficient to explain 50 percent of variance across the nuisance mask (CSF, WM,
combined, or temporal). The remaining components are dropped from consideration. The
head-motion estimates calculated in the correction step were also placed within the
corresponding confounds file. The confound time series derived from head motion estimates
and global signals were expanded with the inclusion of temporal derivatives and quadratic terms
for each (Satterthwaite et al. 2013). Frames that exceeded a threshold of 0.5 mm FD or 1.5
standardized DVARS were annotated as motion outliers. Additional nuisance timeseries are
calculated by means of principal components analysis of the signal found within a thin band
(crown) of voxels around the edge of the brain, as proposed by (Patriat, Reynolds, and Birn
2017). The BOLD time-series were resampled into standard space, generating a preprocessed
BOLD run in MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped
version were generated using a custom methodology of fMRIPrep. The BOLD time-series were
resampled onto the following surfaces (FreeSurfer reconstruction nomenclature): fsaverage.
Automatic removal of motion artifacts using independent component analysis (ICA-AROMA,
Pruim et al. 2015) was performed on the preprocessed BOLD on MNI space time-series after
removal of non-steady state volumes and spatial smoothing with an isotropic, Gaussian kernel
of 6mm FWHM (full-width half-maximum). Corresponding “non-aggresively” denoised runs were
produced after such smoothing. Additionally, the “aggressive” noise-regressors were collected
and placed in the corresponding confounds file. Grayordinates files (Glasser et al. 2013)
containing 91k samples were also generated using the highest-resolution fsaverage as
intermediate standardized surface space. All resamplings can be performed with a single
interpolation step by composing all the pertinent transformations (i.e. head-motion transform
matrices, susceptibility distortion correction when available, and co-registrations to anatomical
and output spaces). Gridded (volumetric) resamplings were performed using
antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize the
smoothing effects of other kernels (Lanczos 1964). Non-gridded (surface) resamplings were
performed using mri_vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn 0.9.1 (Abraham et al. 2014,
RRID:SCR_001362), mostly within the functional processing workflow. For more details of the
pipeline, see the section corresponding to workflows in fMRIPrep’s documentation.

Copyright Waiver
The above boilerplate text was automatically generated by fMRIPrep with the express intention
that users should copy and paste this text into their manuscripts unchanged. It is released under
the CC0 license.
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3. Description of data analysis pipeline

All analyses, after preprocessing, used the standard fMRI pipeline from the Saxe Lab
(https://saxelab.mit.edu/).

Packages and software
We use singularity containers for all processes in the lab pipeline. We are currently working on
making our containers accessible publicly, but for now here is a list of software versions we use:

● Singularity: 3.4.1
● Docker image version of singularity available here
● We also use FSL for group level analyses:

○ FSL (for randomise, cluster): 5.0.9
○ Docker image available here

Software below used within Singularity containers:
● heudiconv: 0.9.0 (data analyzed before summer 2022: 0.5.4.dev1)- singularity image

from Docker here
● fmriprep: 22.0.2 (data analyzed before summer 2022: v1.2.6)- singularity image from

Docker here
● nipy/nipype: 1.5.1 - singularity image from Docker (closest match) here

Conda:
● 4.5.12 (heudiconv; fmriprep)
● 4.8.4 (nipype; univariate/multivariate ROI analyses)
● Python:

○ 3.6.7 (used in heudiconv container)
○ 3.7.1 (fmriprep container)
○ 3.6.5 (nipype container)
○ 3.8.3 (univariate/multivariate ROI analyses container)

Processes
Convert DICOMs to BIDS
We use heudiconv in a singularity container to convert fMRI data to BIDS format based on the
experimental design.

Preprocessing
We preprocess data using fMRI data using the fMRIprep toolbox within a singularity container.
Here is an example of how we call fMRIprep using the standard flags for our pipeline:

fmriprep $data_directory/BIDS $data_directory/BIDS/derivatives
participant --participant_label $subject_id --mem_mb 15000 --ignore
slicetiming --use-aroma -w $scratch --fs-license-file
$FSL_license_path --output-spaces MNI152NLin6Asym:res-2

Note, fMRIprep is technically nondeterministic; there is slight computational variability that
results in slightly different reconstructions each time fMRIprep is run. For this reason, we try to
maintain a standard of sharing subject-level preprocessed data as well as raw BIDS data when
possible (i.e., when we have consent to share).
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fMRIprep includes standard fMRI preprocessing, and with the --use-aroma flag, it also runs
"soft" artifact correction and generates the confounds used as nuisance regressors in first-level
modeling. See fMRIprep pages (linked above) for details.

Motion exclusions
After preprocessing, we use fMRIprep's Frame Displacement (FD) estimate per run to flag
volumes within each run that have greater than X units of change (typically: 0.4 units) in FD
from the start of the run. These volumes are excluded from first-level analyses. If greater than
Y% (typically: 25%) of any run is flagged as motion, the whole run is excluded.

First level analyses
We use Nipype to combine tools from different software packages, mainly relying on Nipype's
FSL interface to fit the run-level (first-level) GLM. The model is fit using FSL's FEAT tool.

There are event regressors per each contrast specified in the study-specific contrast file, as well
as confounds imported from fMRIprep preprocessing. Specifically, this step relies on the
confounds text file that fmriprep outputs and the realigned and normalized bold and anatomical
images, as well as the events.tsv files located inside the BIDS directory specifying the onset and
duration for every condition in the experiment (instructions to create the events.tsv file below).

The design for the experiment is calculated from those event files, along with nuisance
regressors specified below. Each event regressor is convolved with a double-gamma HRF, and
a high-pass filter is applied to both the data and the model.

Artifact detection is performed using nipype’s RapidART toolbox, which is itself an
implementation of SPM’s ART toolbox. Individual TRs are identified as outliers if they exceed a
motion threshold of more than .4 units of frame displacement, or if the average signal intensity
of that volume is more than three standard deviations away from the mean average signal
intensity.

In addition to the ART outliers (one regressor per outlier volume), the current Saxelab script
includes a summary movement regressor (framewise displacement, or FD), and 6 anatomical
CompCor regressors that are intended to control for the average signal in white matter and CSF.
All regressors other than head movement parameters were convolved with a standard
double-gamma hemodynamic response function, with a high pass filter of 1/210 Hz (Experiment
1) or 1/229 Hz (Experiment 2) applied to both the data and the model. Event regressors were
defined as a boxcar from the start and end of each block (localizer tasks) or event (VOE task).

A smoothing kernel of 6mm is applied to the preprocessed bold images, and finally, FSL’s GLM
runs the first-level model. The current default is to run the model in MNI space.

Contrasts are estimated based on the contrasts specified in the contrasts.tsv file, located in the
data/BIDS/code directory.

The standard outputs of an FSL analysis are created in the output directory, including parameter
estimates (pe.nii.gz), contrast estimates (con.nii.gz), and residuals. For exploring significance at
the run level, the con*zstat.nii.gz are the most useful files, while higher-level models will use the
cope and varcope images as inputs to their mixed-effects models.
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Second level analyses
Subject-level or second-level modeling combines the GLMs across runs, per subject.

The subject-level scripts will take the data from first level analyses and do operations on them;
namely, we use the copes (beta estimates) and varcopes (variance estimates) using FSL's
fixed-effects flow. We again use Nipype to execute this. Specifically, we use the FSL FEAT
sub-tool called FLAME (FMRIB's Local Analysis of Mixed Effects).

There are two avenues for combining run-level model outputs after creating first-level models,
though the second is more commonly used, and also includes the outputs of the first:

(1) Traditional: Create a single second-level model combining all runs of a task, per subject and
per contrast.

(2) Iterative: Iteratively create a second-level model for each set of n-1 runs (excluding 1 run
from all n runs), per task, per subject, per contrast. (Note: we will call each of these
leave-one-run-out combinations a "fold.") This allows us to e.g., select the top voxels based on
n-1/n of the data and extract the betas only from the held-out run. We repeat for each possible
fold (leave out each run once), then average the results from the held-out runs.

Group level analysis
During second-level modeling, we created one model for each task (VOE, DOTS, spWMloc,
motionLoc) for each participant. These maps were then passed to group-level modeling,
wherein for each contrast, across subjects, we used FSL’s RANDOMISE to perform a
nonparametric one-sample t-test of the contrast values across subjects against 0, with 5000
permutations, in MNI space, with a threshold of alpha = .05, FWE-corrected, using
threshold-free cluster enhancement (TFCE). In Experiment 1, we used variance smoothing,
σ=6mm, following the recommendation of (Nichols & Holmes, 2002), due to its small sample
size.
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4. Procedures for parcel selection and creation

4.1 Overview
We aimed to identify the neural correlates of each of the hypothesized cognitive processes that
underlie the VOE effect: domain-specific psychological or physical processing, and
domain-general early visual processing and/or goal-directed attention. This section describes
how we chose parcels, or search spaces for subject-specific fROI definition. In total, we studied
responses in 42 parcels across the cortex. We chose parcels for psychology and physics
regions from a combination of prior literature, and exploratory analyses on group data from
Experiment 1 that were independent of the functional data we analyzed from the VOE task
(selected using runs 2-4, and used to study the responses in run 1). The 18 non-overlapping
domain-specific parcels (search spaces) we created from independent data spanned regions
previously implicated in theory of mind, action understanding, and physical reasoning, as well as
regions in the ventral and lateral occipital cortices and parahippocampal gyrus. The 24
non-overlapping domain-general parcels came from prior work: 4 early visual regions (parcels
from Pramod et al., 2022), and 20 regions from the multiple demand network (parcels from
https://evlab.mit.edu/funcloc/). The early visual parcels were derived from the Desikan-Killiany
and Destrieux cortical parcellations in Freesurfer, and the multiple demand parcels were created
based on functional data from a probabilistic overlap map from 197 adult participants who
performed a spatial working memory task (the same task we scanned, spWMloc).
These regions were selected prior to data collection for Experiment 2.

Our analyses aimed to balance two considerations: to maximize sensitivity to responses in
individual regions, but also to characterize the distribution of information across the cortex. In
the primary exploratory (Experiment 1) and confirmatory (Experiment 2) analyses, we focused
on a few regions that served as the best proxies for each hypothesized cognitive process,
based on prior literature and exploratory analyses over independent data from Experiment 1.
For domain-specific psychological processing, we chose left and right superior temporal sulcus
(STS). For domain-specific physical processing, we chose left and right supramarginal gyrus
(SMG). Both STS and SMG were chosen because in group-level analyses, these regions
showed greater responses to social and physical stimuli for both the VOE and the DOTSloc
tasks, in Experiment 1 (see SI Section 7). For domain-general visual processing, we chose
bilateral primary visual cortex (V1) and bilateral middle temporal area (MT); because there was
no independent localizer for area MT in Experiment 1, we only studied left and right V1. For
domain-general goal-directed attention, we chose bilateral anterior parietal cortex (APC), and
right precentral/inferior frontal cortex (RFC), based on the exploratory analyses in Experiment 1.
These two MD regions, identified using runs 2-4 of the VOE task, showed the biggest VOE
effect size, appeared in a meta-analysis over regions that encode reward prediction error during
learning (Fouragnan et al., 2018), and are close in proximity to findings from previous research
on neural responses to magic tricks (Parris et al., 2009) and curiosity inducing trivia (Kang et al.,
2009). We pre-registered this selection procedure but due to an error in this analysis, we
originally selected partially different MD focal regions than what is reported in this paper. For full
transparency, we report the results from these regions in the SI, Section 5.6.

We pre-registered the same 8 focal regions for Experiment 2 and defined them using our
localizer tasks. We took the top 100 voxels (by z statistic) that responded to physical or social
events (DOTSloc; physics and psychology regions), responded more to visual stimuli than rest
(spWMloc; bilateral V1), responded more to coherent than incoherent motion (MotionLoc;
bilateral MT), and responded more to difficult than easy spatial working memory tasks
(spWMloc; MD regions). In subsequent exploratory analyses, we studied responses in the larger
set of domain-specific and domain-general regions.
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4.2 Details about domain-specific parcel construction
Our domain-specific parcels were derived from group-level data on the DOTSloc task,
group-level data from runs 2-4 of the VOE task (with the held-out run 1 reserved for studying the
VOE response), and parcels from Pramod et al (2022) of the frontoparietal physics regions,
which respond more during judgments of the physical stability of block towers than judgments of
the color of the blocks in the same stimuli. First, we created p maps with a relaxed threshold of p
= 0.2 (TCFE) for both the DOTSloc and VOE data, for the contrasts social >< physical. Then,
we found intersecting voxels between (i) the p map for the physical > social contrast found
intersecting voxels between the DOTSloc task and (ii) and the frontoparietal map from Pramod
et al. (2022). Next, we found intersecting voxels between the p map for the physical > social
contrast from the (i) DOTSloc task, and (ii) the VOE task. Lastly, we found intersecting voxels
between the p map for the social > physical contrast from (i) the DOTSloc task and (ii) the VOE
task. We dropped clusters that were redundant across these intersection maps or appeared in
the cerebellum, flipped the parcel for left SMG over to the right hemisphere to make a right SMG
parcel, and combined small clusters together. Finally, we inflated the parcels to make a
generous search space, checked for intersections between parcels and removed overlapping
voxels and masked the resulting parcels with an MNI brain mask for each hemisphere to ensure
clean separation.

In the end, we created 4 physical clusters that were derived from an intersection of the DOTSloc
and frontoparietal parcels, 4 physical clusters that were derived from an intersection of the
DOTSloc and VOE tasks (physical > social), and 10 social clusters that were derived from an
intersection of the DOTSloc and VOE tasks (social > physical). All of these masks were fixed
before data collection in Experiment 2, and are openly available at https://osf.io/sa7jy/.
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5. Additional univariate results

All univariate analyses were carried out using packages lme4 (Bates et al. 2015), lmerTest
(Kuznetsova et al. 2017), and lsmeans (Lenth, 2016).

5.1 Habituation of the neural VOE signal across runs
In Experiment 1, we checked whether the size of the VOE effect declines over runs, in left and
right SMG and STS, where we predicted we would find domain-specific effects. The two MD
regions were excluded from this analysis because the data used to identify them, from runs 2-4,
is non-independent of the data for this analysis. We fit a linear mixed effects model including the
interaction between run number and event as fixed effects, and subject ID as a random intercept
(formula: meanbeta ~ extracted_run_number * event + (1|subjectID)). We then
extracted the main effect of event per run using lsmeans(). We found that whereas there was a
significant VOE effect in run 1 (B = 0.455, p = <.001, two-tailed), this effect was absent in the
other runs (run 2: B = 0.13, p = 0.247, two-tailed; run 3: B = 0.019, p = 0.865, two-tailed; run 4:
B = 0.002, p = 0.989, two-tailed). Thus, we proceeded with our ssfROI data from just the first
VOE run, and pre-registered this analysis procedure as a way to select between including data
from all runs, or just the first 2 runs, in Experiment 2.

In Experiment 2, this event by run manipulation check was conducted in all regions for which we
predicted a positive effect (left and right SMG, left and right STS, bilateral APC, right FC).
Similarly to Experiment 1, we found that there were marginal or significant event effects in runs
1 and 2 (run 1: B = -0.298, p = 0.069, two-tailed; run 2: B = -0.328, p = 0.045, two-tailed), but no
significant event effects in runs 3 or 4 (run 3: B = -0.054, p = 0.744, two-tailed; run 4: B = -0.066,
p = 0.685, two-tailed). Thus we followed our plan to restrict all subsequent confirmatory
analyses to the first two runs, using the same set of mixed effects models and significance
thresholds as for Experiment 1.

For the exploratory, psychology-environment events, we again checked whether the VOE effect
declined across all runs in the same regions as for the psychology-action and physics events.
Unlike the VOE effects from the physics and psychology-action events, the VOE effects we
explored from this stimulus set did not habituate over runs (run 1: B = 0.23, p = 0.388,
two-tailed), this effect was absent in the other runs (run 2: B = 0.286, p = 0.284, two-tailed; run
3: B = 0.915, p = 0.001, two-tailed; run 4: B = 0.308, p = 0.248, two-tailed). Based on these
considerations, in the main text, we presented the results from these events in the same portion
of the data as our primary analysis (runs 1 and 2), and from all available data (runs 1-4). Model
formula: meanbeta ~ event + (1|subjectID).

See Figures S1-2 for visualizations of effect sizes across runs in both experiments.

5.2 Overlap between MD and physics ROIs
The search space for a focal multiple demand ROI, the bilateral anterior parietal cortex (APC),
substantially overlapped with the search spaces for 2 physical ROIs, the left and right
supramarginal gyrus (SMG). How much do the ssfROIs, which were defined for each subject
based either on a working memory task (spWMloc) or a physical prediction task (DOTSloc),
overlap with each other? To investigate this question, we computed Dice’s Coefficient (DC;
Bennett & Miller, 2010) between the APC and left/right SMG ROIs for each subject, which
expresses the amount of spatial overlap between the two regions: DC(X, Y)= 2(X∩Y)/(X+Y),
where X+Y is the total number of voxels across the regions X and Y (in our case, 200 voxels,
100 per ROI), and X∩Y is the number of voxels that occupy the same location. We found that
the median Dice’s coefficient between each of the SMG ROIs and the APC ROIs was 0 (LSMG
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range: 0-0.3; RSMG range: 0-0.38). For the majority of participants (21/32 for LSMG; 20/32 for
RSMG), there was no overlap between voxels most selective for physical reasoning, and those
most selective for attentional demand. See Figure S3.

5.3 Non-focal region univariate results (physics and psychology-action events)
In Experiments 1 and 2, we tested for VOE effects (unexpected > expected) for physics and
psychology-action events across a larger set of domain-specific parcels we made based on
independent data from Experiment 1. Parcels from prior work on physical reasoning (33) and
attentional demand (48) (see Methods and SI for details), using a Bonferroni corrected alpha
threshold of p = .05/24 = .002 for domain-general regions (24 total), and of p = .05/18 = .003 for
domain-specific regions (18 total).

Event Effects
No regions beyond our focal regions in Experiment 1 or 2 showed a main effect of event that
passed these stringent significance thresholds. The one region that passed this threshold
overlapped substantially with our RFC ROI. See https://rpubs.com/shariliu/nes_results, Section
5.1.1, for results from all regions.

Domain Effects
In both Experiments 1 and 2, both domain-specific and domain-general regions showed a
greater response for physical than psychological events, or vice versa, that met our stringent
significance threshold. See https://rpubs.com/shariliu/nes_results, Section 5.1.1, for results
from all regions.

In Experiment 1, the regions that responded more to physical events were:
● Left and right visual medial cortex (physics regions): Left [0.64,1.06], B=0.85, p<.001,

two-tailed, d = 0.996, BF > 1000; right [0.355,0.733], B=0.544, p<.001, two-tailed, d =
0.708, BF > 1000

● Left and right anterior parietal cortex (physics regions; both are part of our combined
bilateral APC): Left [0.075,0.33], B=0.202, p=0.002, two-tailed, d = 0.391, BF = 1.114;
right `r [0.075,0.33], B=0.202, p=0.002, two-tailed, d = 0.391, BF = 1.114

In Experiment 1, the regions that responded more to psychological events were:
● Left and right lateral and ventral visual cortex. Left: [-0.715, -0.369], B = -0.542, p < .001,

two-tailed, d = -0.773, BF > 1000. Right: [-0.523, -0.168], B = -0.346, p < .001,
two-tailed, d = -0.481, BF = 16.472

In Experiment 2, the physics ROIs with the biggest univariate preference for physical events (by
effect size) were:

● Right medial visual cortex, [0.894,1.241], B=1.068, p<.001, two-tailed, d = 1.615, BF >
1000

● Left medial visual cortex, [0.704,1.11], B=0.907, p<.001, two-tailed, d = 1.174, BF > 1000
● Right superior parietal cortex, [0.671,1.175], B=0.923, p<.001, two-tailed, d = 0.962, BF

> 1000

In Experiment 2, the MD/early visual ROIs with the biggest univariate preference for physical
events (by effect size) were:

● Right MT, [0.611,0.877], B=0.744, p<.001, two-tailed, d = 1.468, BF > 1000
● Right posterior parietal cortex, [0.879,1.434], B=1.157, p<.001, two-tailed, d = 1.097, BF

> 1000
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● Right mid parietal cortex, [0.66,1.151], B=0.905, p<.001, two-tailed, d = 0.969, BF >
1000

In Experiment 2, two regions showed a greater response to psychological than physical events.
Both were psychology ROIs:

● Left lateral and ventral visual cortex, [-0.768,-0.396], B=-0.582, p<.001, two-tailed, d =
-0.824, BF > 1000

● Left MPFC, [-0.787,-0.275], B=-0.531, p<.001, two-tailed, d = -0.545, BF = 56.18

Event x Domain Interactions
No non-focal regions showed an event x domain interaction, even by the more lenient p < .05
threshold. See https://rpubs.com/shariliu/nes_results, Section 5.1.1, for results from all regions.

In sum, like in our confirmatory results, we found strong evidence for domain-specific
responses, but weaker evidence for event-driven responses, in both ROIs that we selected and
defined to be domain-specific and domain-general.

5.4 Alternative definition for psychology ROIs
Why did we fail to observe a consistent main effect of event, or a VOE effect only for
psychological events, in left and right STS?

One possibility is a conceptual mismatch between the social information evoked by our
independent localizer (two agents interacting socially), and the social information evoked by the
VOE task (a single agent acting to achieve a physical goal, in the psychology-action events of
Experiment 2). To test this possibility, we repeated the univariate analysis in left and right STS,
except this time, we selected ssfROIs in STS based on the psychological > physical contrast
from an independent split of the VOE task (runs 3-4 in Experiment 2; top 100 voxels by the z
statistic like other analyses).

In Experiment 2, we found that left and right STS, defined based on a contrast between
psychological events (involving instrumental action) and purely physical events, showed a
reliable preference for psychological events (left STS: [-0.319,-0.045], B=-0.182, p=0.01,
two-tailed, d = -0.35, BF = 0.317; right STS: [-0.415,-0.206], B=-0.31, p<.001, two-tailed, d =
-0.78, BF = 58439.327). However, these left and right STS ROIs did not respond more to
unexpected than expected events (left STS: [-0.218,0.055], B=-0.081, p=0.246, two-tailed, d =
-0.156, BF = 0.022; right STS: [-0.187,0.022], B=-0.082, p=0.125, two-tailed, d = -0.207, BF =
0.027). Neither region showed an interaction between domain and event (left STS:
[-0.131,0.142], B=0.005, p=0.937, two-tailed, d = 0.011, BF = 0.011; right STS: [-0.141,0.069],
B=-0.036, p=0.502, two-tailed, d = -0.091, BF = 0.011).

In summary, across two ROI definitions,, we did not find evidence for domain-general or
domain-specific prediction error in “psychology” STS ROIs, though STS did respond more to
psychological than physical events, characteristic of its social functions.

5.5 Visual statistics
We tested for the robustness of our VOE effects (domain-specific event response in SMG,
domain-general event responses in APC and RFC) accounting for the variability in the
lower-level visual statistics in our stimuli. We conducted this exploratory analysis on the data
from Experiment 2, which contained many more scenarios than Experiment 1, to maximize
sensitivity to stimulus-driven effects.
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For each video, we calculated the amount of luminance, contrast, motion, high spatial frequency
info, low spatial frequency info, curvilinearity, and rectilinearity, z-scored across videos per
feature.

To calculate spatial frequency, we computed Fourier transform on each frame of each video,
and followed methods and cut-offs from Rajimehr et al. (2011) to calculate high and low spatial
frequency per frame. To calculate rectilinearity, we applied angled Gabor filters (90° and 180°)
with four different spatial frequencies (1, 2, 4, and 8) to each pixel. Averages were taken per
frame of each stimulus video, and across frames per video. To calculate curvilinearity, we used
a similar method using angled Gabor filters (30°, 60°, 90°, 120°, 150°, and 180°) with five
different curve depths. These methods followed Kosakowski et al. (2022). To calculate
luminance, we split each frame of each stimulus video into separate R, G, and B channels and
computed luminance using the following formula: b = (b / 255) ** 2.2, g = (g / 255) ** 2.2, r = (r /
255) ** 2.2; luminance = 0.2126 * r + 0.7152 * g + 0.0722 * b
(https://en.wikipedia.org/wiki/Relative_luminance). To calculate the contrast of each video, we
converted each frame to grayscale and obtained the interquartile range of grayscale intensity.
For all of the above visual features, we calculated each feature per frame and then averaged
across frames to obtain a single value per stimulus. Finally, to calculate motion energy, we
followed the methods of Nishimoto et al. (2011). We passed each stimulus video through a
series of 3D spatiotemporal Gabor wavelet filters to determine the strength of each motion
energy direction and speed. Then we calculated the mean value across all filters, resulting in
one value per stimulus.

We found that two visual features, high and low spatial frequency, were highly correlated in
many of the models including visual features as predictors. Low spatial frequency was excluded
from all models to avoid issues of multicollinearity. See SI for full univariate results on
psychology-action and physics events from Experiment 2, including these per-video features as
regressors.
Then, we built a GLM to estimate one beta per presentation of each video (i.e. 16
familiarization-test pairs, 32 betas per run) and extracted these betas in the same ssfROIs as
the confirmatory analysis. Finally, we fit the same mixed effects models as the confirmatory
analysis, in the same regions, using these video-specific betas, while also adding in fixed effects
for the 7 visual statistics. Low spatial frequency was dropped from all models given high
collinearity with high spatial frequency. Model formula: meanbeta ~ event * domain +
normalized_iqr_contrast + normalized_mean_luminance + normalized_mean_motion +
normalized_mean_hsf + normalized_mean_rect + normalized_mean_curv +
(1|subjectID)).

Each of the visual features predicted the amplitude of univariate activity in at least one focal
region. All of the VOE results in our focal regions (both positive and negative) held taking into
account these features:

● Left and right SMG did not show a main effect of event (LSMG: [-0.076, 0.209], B
=0.067, p = 0.361, two-tailed, d = 0.068; RSMG: [-0.045, 0.252], B =0.103, p = 0.175,
two-tailed, d = 0.101), but both regions showed an interaction between event and
domain, with a greater VOE effect for physical events (LSMG: [0.063, 0.347], B =0.205,
p = 0.005, two-tailed, d = 0.209; RSMG: [0.033, 0.328], B =0.18, p = 0.018, two-tailed, d
= 0.177).

● Neither left nor right STS showed a main effect of event (LSTS: [-0.103, 0.257], B
=0.077, p = 0.403, two-tailed, d = 0.062; RSTS: [-0.041, 0.247], B =0.103, p = 0.165,
two-tailed, d = 0.103).
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● Neither bilateral V1 and bilateral MT showed a main effect of event (V1: [-0.137, 0.26], B
=0.061, p = 0.547, two-tailed, d = 0.045; MT: [-0.07, 0.163], B =0.047, p = 0.437,
two-tailed, d = 0.058).

● Both bilateral APC and RFC showed a main effect of event, responding more to
unexpected than expected events (APC: [0.084, 0.422], B =0.253, p = 0.004, two-tailed,
d = 0.217; RFC: [0.084, 0.423], B =0.254, p = 0.004, two-tailed, d = 0.217).

The domain effects from all domain-specific regions held, though the SMG domain responses
were weaker after controlling for visual features:

● Left and right SMG responded more to physical events (LSMG: [0.024, 0.512], B =
0.268, p = 0.032, two-tailed, d = 0.159; RSMG [0.04, 0.548], B = 0.294, p = 0.024,
two-tailed, d = 0.168)

● Left and right STS responded more to psychological events (LSTS [-0.705, -0.086], B =
-0.396, p = 0.013, two-tailed, d = -0.185; RSTS [-0.64, -0.139], B = -0.389, p = 0.003,
two-tailed, d = -0.225)

The domain effects from MD and early visual regions were no longer statistically significant,
after controlling for all visual features, except for V1.

● Neither RFC nor APC showed a main effect of domain (APC: [-0.156, 0.426], B = 0.135,
p = 0.365, two-tailed, d = 0.067; RFC: [-0.006, 0.577], B = 0.286, p = 0.056, two-tailed, d
= 0.142)

● MT did not show a main effect of domain (MT: [-0.01, 0.389], B = 0.19, p = 0.064,
two-tailed, d = 0.137)

● V1 still responded more to physical than psychological events ([0.122, 0.813], B = 0.468,
p = 0.008, two-tailed, d = 0.196).

The full results of this analysis, including effects per visual feature, and domain effects, can be
found at https://rpubs.com/shariliu/nes_results in Section 5.1.5.

5.6 Results from originally selected MD ROIs
We originally pre-registered (1) bilateral insula and (2) right precentral/inferior frontal cortex as
our focal MD ROIs. We discovered a mistake in this ROI definition analysis and, after fixing it,
followed the same pre-registered procedure for selecting the two MD ROIs that appear in the
main text. We report the results from these original two ROIs below for full transparency. See
https://rpubs.com/shariliu/nes_results, Section 5.1.4, for full results.

In Experiment 1, neither bilateral IFC, nor bilateral insula, responded significantly more to
unexpected than expected events (IFC: [-0.002, 0.265], B = 0.131, p = 0.056, two-tailed, d =
0.242, BF = 0.065; insula: [-0.003, 0.167], B = 0.082, p = 0.06, two-tailed, d = 0.238, BF =
0.039).

In Experiment 2, bilateral IFC, but not bilateral insula, responded significantly more to
unexpected than expected events (IFC: [0.046, 0.383], B = 0.215, p = 0.013, two-tailed, d =
0.336, BF = 0.297; insula: [-0.042, 0.163], B = 0.06, p = 0.253, two-tailed, d = 0.154, BF =
0.016).
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Figure S6. (A) Stimuli from the domain of intuitive psychology, wherein the actions of an agent
lead to a surprising physical outcome in the surrounding environment
(psychology-environment). In agent-solidity, an agent passes through a solid wall; in
infer-constraint, an obstacle that explains an agent's action is missing. (B) Univariate responses
towards these events in all focal regions, across all four runs. Error bars indicate within-subjects
standard error.

5.7 VOE effects for psychology-environment events, all runs

Taking data from all 4 runs, we found that many non-focal regions responded significantly more
to unexpected than expected psychology-environment events. See
https://rpubs.com/shariliu/nes_results, Section 5.1.5, for results from all regions.
The domain-general regions:

● Left insula: [0.048, 0.167], B = 0.107, p < .001, two-tailed, d = 0.304, BF = 1.509
● Right superior frontal [0.074, 0.278], B = 0.176, p = 0.001, two-tailed, d = 0.293, BF =

1.648

The domain-specific regions:
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● Right precentral/superior frontal [0.067, 0.215], B = 0.141, p < .001, two-tailed, d =
0.322, BF = 3.974

● Right superior inferior frontal [0.167, 0.353], B = 0.26, p < .001, two-tailed, d = 0.473, BF
> 1000

● Left superior parietal [0.134, 0.472], B = 0.303, p < .001, two-tailed, d = 0.302, BF =
4.051

● Right superior parietal [0.157, 0.475], B = 0.316, p < .001, two-tailed, d = 0.336, BF =
15.888

● Left lateral and ventral visual [0.076, 0.275], B = 0.175, p = 0.001, two-tailed, d = 0.297,
BF = 1.933

● Right lateral and ventral visual [0.127, 0.384], B = 0.256, p < .001, two-tailed, d = 0.335,
BF = 12.163

5.8 VOE effects by task
We explored whether the VOE effect varied by task (e.g. permanence vs solidity), beyond by
domain (e.g. physics vs psychology). We fit a mixed effects model on responses per scenario
per task per ROI, extracted the coefficient and standard errors from the model, and plotted them
in Figures S7-8. Because each slice of this data is small, we do not strongly interpret these
results. However, qualitatively, we see that the tasks, across experiments, with the lowest neural
VOE effect overall, across regions, are the permanence and infer-constraint tasks (Exp 2), and
the efficiency task (Exp 1). By contrast, qualitatively, the task that evoked the highest responses
across all regions was the agent-solidity task (Exp 2).
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Figure S7. Per-task, per-region VOE effects for Experiments 1 and 2, organized by region. Error
bars indicate the standard error of the B coefficient. ~ p < .10, * p < .05, ** p < .01, ***p < .001,
two-tailed. This parallels Figure S8, except that Figure S8 is organized by task.
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Figure S8. Estimate of neural VOE effect (positive values indicate greater responses to
unexpected than expected) for each task across all focal regions for Experiments 1-2. Error bars
indicate the standard error of the B coefficient. ~ p < .10, * p < .05, ** p < .01, ***p < .001,
two-tailed. This parallels Figure S7, except that Figure S7 is organized by region.



50

6. Supplemental MVPA results

For both Experiments 1 and 2, we calculated the Euclidean distance for each participant for
each region along the following category boundaries: events across domains, domains across
events, events within domains (i.e. information about event within psychology-action and
physics separately), and domains within events (i.e. information about domains within
unexpected and expected events separately). To evaluate whether a given region had
multivariate information about a given category boundary, we first computed the within vs
between category distance for each boundary. Then we tested whether the within-category
distances were significantly less than the between-category distances using a one-tailed
Wilcoxon signed rank test. Below we will highlight the results, from Experiment 2, most relevant
to our realization that we could not use MVPA to study the VOE effect from this work.

6.1 Robust univariate, and absent multivariate, event effects

In Experiment 2, both APC and RFC showed a univariate main effect of event. We planned to
test for multivariate information about events that generalized across domains. However, neither
of these regions contained multivariate information about event within domains (physics: V =
257, p = 0.555, one-tailed, r = 0.104; psychology: V = 227, p = 0.756, one-tailed, r = 0.055).
Thus, it did not make sense to us to strongly interpret the null MVPA effect across domains
(bilateral APC: V = 273, p = 0.438, one-tailed, r = 0.137; right frontal cortex: V = 219, p = 0.8,
one-tailed, r = 0.045).

This stood in contrast to the robust domain multivariate effects. In Experiment 2, the regions that
showed univariate domain effects, and no domain x event interaction, showed multivariate
domain effects across event types:

● Bilateral V1: V = 495, p < .001, one-tailed, r = 0.875
● Bilateral MT: V = 518, p < .001, one-tailed, r = 1.013
● Bilateral APC: V = 474, p < .001, one-tailed, r = 0.776
● Left STS: V = 378, p = 0.016, one-tailed, r = 0.425
● Right STS: V = 386, p = 0.011, one-tailed, r = 0.451
● Right SMG: V = 435, p < .001, one-tailed, r = 0.62

The remaining focal region, left SMG, did not contain multivariate information about domains
across events, V = 314, p = 0.18, one-tailed, r = 0.237. Instead, its domain boundary was
marginally significant for unexpected events V = 345, p = 0.067, one-tailed, r = 0.324, and not
significant for expected events, V = 310, p = 0.2, one-tailed, r = 0.227

See https://rpubs.com/shariliu/nes_results, Section 5.2, for full MVPA results for all regions, for
all event boundaries, and for both experiments.
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Figure S9. Multivariate effect size results across all domain-specific regions (A-B) and
domain-general regions (C-D) from the exploratory results of Experiment 1, and the confirmatory
results of Experiment 2. (A) and (C) show correspondence between event information across
domains. (B) and (D) show correspondence between domain information across events. We
found that the responses in both categories of regions were organized by domain, and not by
event. ~ p < .10, * p < .05, ** p < .01, ***p < .001, one-tailed, non-parametric test for
independence.

6.2 Multivariate region-by-region analysis
Here we report the results from a pre-registered confirmatory univariate analysis, studying the
organization of information about domains and events across a large set of regions. However,
after finding that regions that show a univariate VOE effect do not show a multivariate effect of
event, within or across domains, we have decided to move that analysis, and this analysis, to
the SI. Given that the multivariate information about domains is much stronger than multivariate
information about events in our focal regions, we do not strongly interpret the following results,
which show that both domain-specific and domain-general regions are organized more so by
domain than by event. However, an alternative interpretation of these results is that the VOE
response is encoded in the amplitude of activity voxels within an ROI, but the spatial pattern of
this response is not reliable. Below we report them for full transparency.
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For each region, we computed the effect size for the multivariate category boundary for events
across and within domains, and information about domains across and within events. In Exp 1
and 2, we conducted this analysis on the 18 domain-specific regions, and on the 24
domain-general regions (22 for Experiment 1; minus left and right MT, which we had no way to
define). The voxel selection procedure was identical to the univariate analyses, except that we
selected the top 100 voxels from each region in each hemisphere, to maximize the number of
regions available as input. In this analysis, we focused on domain-within-events and
events-within-domain effect sizes - that is, how much information there is about a given category
boundary in a region, relative to variance and sample size. For each region, we computed a pair
of MVPA effect sizes, r_event_psychology and r_event_physics, that describes the amount of
event information for each domain separately. For each region, we also computed a second pair
of MVPA effect sizes, r_domain_expected and r_domain_unexpected, that describes the
amount of domain information for each event type separately.

The main question is whether domain-specific regions and domain-general regions are
organized primarily by domain and event, respectively. We found in Exp 1, and hypothesized
and found in Exp 2, that patterns of activity across domain-specific regions and domain-general
regions will be organized more by domain than by event. To test this hypothesis, we calculated
a correlation value, using a nonparametric test of independence, which uses permutation to test
the null hypothesis that two vectors are statistically independent, but making no assumption
about the linearity of their dependence. For each set of regions, we calculated a correlation
value relating information about events across domains, across regions (r_event =
cor(r_event_psychology, r_event_physics), and a second correlation value relating information
about domains across events, across regions (r_domain = cor(r_domain_expected,
r_domain_unexpected)).

In Exp 2 we predicted that for both domain-specific and domain-general regions, (1) r_domain
will be significantly larger than expected by chance (one-tailed prediction), and (2) r_domain will
be larger than r_event (one-tailed prediction). To test this prediction, we used bootstrapping to
compute the difference between these two values under the null hypothesis (4000 iterations).
We calculated a p-value by counting the number of permuted differences out of the 4000 that
was equal to or greater than the observed difference between r_domain and r_event. Our
significance threshold was p = .05, one-tailed.

Exploratory results from Experiment 1 showed that for both domain-specific and domain-general
regions, the degree to which a region contained information to distinguish psychological
expected vs unexpected events did not significantly predict that same region’s information to
distinguish between physical expected and unexpected events (domain-specific: cor = -0.138, p
= 0.740; domain-general: cor = -0.138, p = 0.740). In contrast, the degree to which a region
contained information to distinguish between expected psychological vs physical events strongly
predicted the degree to which that region distinguishes between unexpected psychological vs
physical events (domain-specific: cor = 0.783, p <.001; domain-general: cor = 0.788, p < .001).
Comparing the two correlations against each other using bootstrapping to generate the
distribution of correlations expected under the null hypothesis (4000 iterations), we found that
the domain correlation was stronger than the event correlation for domain-specific regions (95%
CI [0.269, 1.065], p = 0.002), and for domain-general regions (95% CI [0.011, 1.407], p = 0.048).
We then pre-registered these predictions in Experiment 2. The confirmatory analyses of
Experiment 2 converged with these findings. There was no significant relationship between
event information across psychological and physical events in either domain-specific regions
(cor = 0.225, p = 0.148) or domain-general regions (cor = 0.225, p = 0.146). There was a
correspondence between domain information across event types in both domain-specific
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regions (cor = 0.439, p = 0.036) and domain-general regions (cor = 0.637, p < .001). However,
the two correlations were not significantly different from each other in either domain-specific
(95% CI [-0.232, 0.642], p = 0.229), nor domain-general regions (95% CI [-0.031, 0.821], p =
0.064). Taking these results literally, for both putatively domain-general and domain-specific
regions, multivariate information across regions is organized by domain, and not by event.
However, for the reasons described in the first paragraph of this section, we do not strongly
interpret these results.
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7. Whole-brain group analyses

Figure S10. Results from whole-brain random effects analyses from the social/psychological vs
physical contrast for the VOE task in Experiments 1-2 (A-B), and the DOTS task in Experiment 2
(C), generated from a non-parametric one-tailed test using FSL’s randomise() and 5000
iterations, at a threshold of p < .05, TCFE. We additionally applied variance smoothing over the
data for Experiment 1 (σ=6mm) following the recommendation of Nichols and Holmes (2002),
due to the small sample size (< 20 people). Arrows point to the focal physics and psychology
regions of interest (SMG and STS). Abbreviations: LH = left hemisphere; RH = right
hemisphere; SMG = supramarginal gyrus; STS = superior temporal sulcus.
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Figure S11. Group results on the neural VOE effect (unexpected > expected) from Experiment
1 (A-B) and Experiment (2) (C-D). Purple regions in (B) and (C) indicate the VOE effect folding
over psychology-action and physics events, and pink regions in (D) indicate the VOE effect over
psychology-environment events. All maps generated from a non-parametric one-tailed test
using FSL’s randomise() and 5000 iterations, at a threshold of p < .05, TCFE, except for the
VOE effects for psychology-action and physics events in panel (C), which were absent at this
threshold, and shown at a more lenient threshold of p < .20, TCFE. We additionally applied
variance smoothing over the data for Experiment 1 (σ=6mm) following the recommendation of
Nichols and Holmes (2002), due to the sample size (< 20 people). Abbreviations: LH = left
hemisphere; RH = right hemisphere.
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Figure S12. Group results over localizer tasks in Experiment 2. (A) Hard > easy contrast from
the MD localizer. (B) Physical vs social contrast from the DOTS localizer. (C) Coherent >
incoherent motion from MT localizer. These maps were generated from a non-parametric
one-tailed test using FSL’s randomise() and 5000 iterations, at a threshold of p < .05, TCFE.
Arrows point to the focal physics and psychology regions of interest (SMG and STS), the focal
MD regions of interest (APC and RFC), and one of the two focal early visual regions of interest
(MT). Abbreviations: LH = left hemisphere; RH = right hemisphere; APC = anterior parietal
cortex; RFC = right frontal cortex; SMG = supramarginal gyrus; STS = superior temporal sulcus;
MT = motion-sensitive area.
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