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Abstract

From birth, humans constantly make decisions about what to look at and for how long. Yet, the
mechanism behind such decision-making remains poorly understood. Here, we present the rational
action, noisy choice for habituation (RANCH) model. RANCH is a rational learning model that takes
noisy perceptual samples from stimuli and makes sampling decisions based on expected information
gain (EIG). The model captures key patterns of looking time documented in developmental research:
habituation and dishabituation. We evaluated the model with adult looking time collected from a
paradigm analogous to the infant habituation paradigm. We compared RANCH with baseline mod-
els (no learning model, no perceptual noise model) and models with alternative linking hypotheses
(Surprisal, KL divergence). We showed that (1) learning and perceptual noise are critical assumptions
of the model, and (2) Surprisal and KL are good proxies for EIG under the current learning context.

Keywords: Decision-making; Learning; Bayesian modeling; Cognitive development

1. Introduction

From trying to find our way through a busy street to swiping through TikTok, people are
constantly making the decision of whether to keep looking or to look at something else. Even
the youngest infants decide whether to keep looking at what is in front of them or move on

Correspondence should be sent to Anjie Cao, Department of Psychology, Stanford University, 450 Jane Stan-
ford Way, Stanford, CA 94305, USA. E-mail: anjiecao@stanford.edu

http://crossmark.crossref.org/dialog/?doi=10.1111%2Ftops.12631&domain=pdf&date_stamp=2022-11-02


A. Cao et al. / Topics in Cognitive Science 15 (2023) 291

(Haith, 1980). How can we explain this decision-making process? Our goal in the current
paper is to provide a model of the basic decision: whether to keep looking at a stimulus. To
do so, we model looking as rational active selection of noisy perceptual samples for learning.

Developmental researchers have long capitalized on infants’ ability to control their atten-
tion, making inferences about learning and mental representations from changes in look-
ing duration (Baillargeon, Spelke, & Wasserman, 1985; Fantz, 1963). In a typical exper-
iment, infants decrease their looking duration upon seeing the same stimulus repeatedly
(habituation) but recover interest when seeing a novel stimulus (dishabituation) (Colombo &
Mitchell, 2009). While these phenomena are well-documented, the mechanisms underlying
them remain poorly understood, even though assumptions about habituation and dishabitua-
tion underpin many other claims about infants’ cognitive repertoire (Aslin, 1991; Carey, 2009;
Haith, 1998; Sim & Xu, 2019).

One classic theory of infant looking posits that infants look at stimuli in order to learn
from them, so the dynamics of looking time are driven by the dynamics of learning (Hunter
& Ames, 1988). This theory describes looking duration as a function of exposure, stimulus
complexity, and processing difficulty. The more an infant has already been exposed to a stim-
ulus, the less they have yet to learn about it, but the more complicated the stimulus is, the more
they have to learn overall, and older infants are assumed to learn faster than younger infants.
Although this theory is influential, its predictions are qualitative, not quantitative, and have
not been systematically tested (for exception, see Bergmann & Cristia, 2016; Hunter, Ames,
& Koopman, 1983). Nevertheless, it is often invoked as a post-hoc explanation of observed
patterns in infant data.

Recent work has attempted to overcome these limitations by describing infants’ looking
behaviors quantitatively through computational modeling. Kidd et al. (2012) developed a
paradigm in which infants are shown sequences of events until they look away. A rational
learning model computed the surprisal (negative log probability) of each event. Infants looked
away most from events that were either too high or too low in surprisal (a “goldilocks” effect),
suggesting that infants might be looking longer at stimuli with an optimal level of informa-
tion content.

In this work, surprisal functioned as a quantitative linking hypothesis, connecting between
a learning model and data. But other such linking hypotheses are possible. For example,
research on information foraging postulates that human exploratory behaviors are driven by
maximizing expected information gain (EIG) (Hills et al., 2015; Pirolli & Card, 1999). In
this formulation, agents focus on locations or examples where the amount to be learned is on
average highest, a conclusion that is ratified by the emerging literature on curiosity in devel-
opmental robotics and reinforcement learning (Oudeyer, Kaplan, & Hafner, 2007). Indeed,
EIG provides a good model of curiosity-driven learning in human children and adults (e.g.,
Liquin, Callaway, & Lombrozo 2021).

Unfortunately, EIG can be difficult to compute. Because EIG is a measure of EIG, its
computation requires combinatorial search over all future possibilities. As a result, EIG is
often approximated by what is termed “learning progress”: the amount of information the
agent just learned (Haber, Mrowca, Fei-Fei, & Yamins, 2018). Following this intuition, Poli,
Serino, Mars, and Hunnius (2020) formalized learning progress as the Kullback–Leibler (KL)
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divergence between the model’s knowledge before and after each stimulus and found
that a higher KL (i.e., more learning progress) predicted longer looking time in a look-
away paradigm.

Thus, existing models take important steps toward a quantitative model of infant attention,
but they have three key limitations. First, conceptually, these previous models are not models
of choice. The models retrospectively fit infants’ overall pattern of attention, without mod-
eling the decision that infants must make in each moment, whether to keep looking at the
current stimulus. Second, and relatedly, these models assume that infants acquire a perfect
representation of a given stimulus upon exposure. These prior models do not accommodate
the noisy nature of perception, and thus cannot explain why infants would have more informa-
tion to gain from longer looking at the same, already perceived stimulus (Callaway, Rangel,
& Griffiths, 2021; Kersten, Mamassian, & Yuille, 2004). Third, because of the first two limi-
tations, the prior models could only directly predict one specific infant looking behavior given
an unusual learning problem: looking away from an ongoing stream of stimuli while learn-
ing about event probabilities. Substantial further innovation is required to use these models
to generate quantitative predictions for infant looking behavior in more standard habituation-
dishabituation experimental designs.

Here, we attempt to overcome these limitations by providing a model of looking behav-
iors as arising from optimal decision-making over noisy perceptual representations (Bitzer,
Park, Blankenburg, & Kiebel, 2014; Callaway et al., 2021). We present the rational action,
noisy choice for habituation (RANCH) model. RANCH works by accumulating noisy sam-
ples and choosing at each moment whether to continue to look at the current stimulus or to
look away to the rest of the environment. Critically, RANCH allows us to explore a learning
problem closer to the problem faced by infants in a standard habituation experiment: instead
of assuming a learner is estimating the probability of events, the model learns a category
based on the exemplars that are presented during habituation (Oakes, 2010). Furthermore,
the architecture allows us to investigate different information-theoretic linking hypotheses
as informing choice, including EIG, surprisal, and KL. We make a preliminary evaluation
of the RANCH model using adult looking time data collected from a self-paced habituation
paradigm that captures habituation, dishabituation, and how these phenomena are modified
by stimulus complexity. We begin by presenting our experiment, since it frames the learning
task for our model.

2. Experiment

To reproduce the key looking time patterns from infant habituation experiments in adult
participants, we chose a learning context in which participants learn about the stimuli as they
look at visually presented exemplars for as long as they like, with no explicit task. The time
participants spent exploring the exemplars served as the adult proxy for looking time. This
experimental setup resembles the classic infant habituation-dishabituation paradigm, rather
than the look-away paradigm where infants were assumed to learn about event probabilities
(Kidd et al., 2012; Poli et al., 2020).
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Fig. 1. Experimental design and examples of simple and complex stimuli. In each block, a deviant could appear
on the second, fourth (as depicted here), or sixth trial or not at all. Stimuli within a block were either all simple or
all complex.

Our initial data come from adults for two reasons. First, adult data are suitable for estab-
lishing quantitative links between models and human behaviors, since infants’ looking time
data tend to have small sample sizes and are, therefore, limited in their quantitative details
(Frank et al., 2017). Second, adult data allow us to test the hypothesis that similar rational
choice processes underlie infant and adult behavior under similar learning contexts.

2.1. Methods

2.1.1. Stimuli
We created the animated creatures using Spore (a game developed by Maxis in 2008). There

were 40 creatures in total, half of which had low perceptual complexity and half of which had
high perceptual complexity (see Fig. 1 for examples). We used the “animated avatar” function
in Spore to capture the creatures in motion.

2.1.2. Procedure
The experiment was a web-based, self-paced visual presentation task. Participants were

instructed to look at a sequence of animated creatures at their own pace and answer some
questions throughout. On each trial, an animated creature showed up on the screen. Partic-
ipants could press the down arrow to go to the next trial whenever they wanted to, after a
minimum viewing time of 500 ms.
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Each block consisted of six trials. Unbeknownst to the participants, each trial within the
block was either a background trial or a deviant trial. One creature was assigned to be the
“background” for each block, and was presented five or six times. If the block contained a
deviant trial, then a new, unique, creature was presented on that trial. The deviant trial could
appear at either the second, fourth, or sixth trial in the block, or not at all. The creatures
presented in the deviant trials and background trials were matched for complexity. Each par-
ticipant saw eight blocks in total, four with simple creatures and four with complex creatures,
in random order across participants.

To test whether behavior was related to task demands, participants were randomly assigned
to one of three attention check conditions, differing in the questions asked following each
block: Curiosity, Memory, and Math. In the Curiosity condition, participants were asked to
rate “How curious are you about the creature?” on a 5-point Likert scale. In the Memory
condition, a forced-choice recognition question followed each block (“Have you seen this
creature before?,” showing either a creature presented in the preceding block or a novel crea-
ture matched in complexity). In the Math condition, the participants were asked a simple
arithmetic question (“What is 5 + 7?”) in a multiple-choice format.

To check if our complexity manipulation was successful, at the end of the eight blocks,
participants were asked to rate the complexity of creatures they encountered on a 7-point
Likert scale.

2.1.3. Participants
We recruited 449 participants (Age M = 30.49; SD = 9.74) on Prolific. They were ran-

domly assigned to one of the three conditions of the experiment. Participants were excluded
if they showed irregular reaction times (e.g., three absolute deviations away from the median
in the log-transformed space) or their responses in the filler tasks indicated low engagement
with the experiment. All exclusion criteria were preregistered. The final sample included 380
participants (Curiosity: N = 143; Memory: N = 98; Math: N = 139).

2.2. Results

The sample size, methods, and main analyses were all preregistered and are available at
https://aspredicted.org/3CR_VDR. Data and analysis scripts are available at https://github.
com/anjiecao/pokebaby_CogSci2022

We first checked whether the basic complexity manipulations were successful. Complex
animated creatures were rated as more perceptually complex (M = 4.63 ; SD = 1.08) than the
simple animated creatures (M = 1.06; SD = 1.06; p < .001).

Next, we tested whether the task (Curiosity, Memory, or Math) affected reaction times in
self-paced viewing (our measure of interest). There were no task effects so we averaged all
results across the three conditions.

We were interested in whether our paradigm successfully captured the characteristic look-
ing time patterns observed in infant literature: habituation (the decrease in looking time for a
stimulus with repeated presentations), dishabituation (the increase in looking time to a new
stimulus after habituated to one stimulus), and complexity effects (longer looking time for
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Fig. 2. Graphical representation of RANCH. Circles indicate random variables. The square indicates fixed model
parameters.

perceptually more complex stimuli). The visualization of our results suggests that we repro-
duce the phenomena qualitatively (Fig. 3, row 1). To evaluate the phenomena quantitatively,
we ran a linear mixed effects model with maximal random effect structure. The predictors
included in the model were a three-way interaction term between the trial number (modeled
as an exponential decay; Kail, 1991), the type of trial (background vs. deviant), and the com-
plexity of the stimuli (simple vs. complex). The model failed to converge, so we pruned the
model following the preregistered procedure. The final model included per-subject random
intercepts. All predictors except for the three-way interaction were significant in the model
(all p < .001), providing a quantitative confirmation that our paradigm successfully captured
the key looking time patterns: habituation (trial number), dishabituation (the deviant effect),
and complexity (the stimulus complexity effect). We next tested whether we could capture
these behavioral results using the RANCH model.

3. Model

RANCH treats the learning problem that participants face in our experiment as a form
of Bayesian concept learning (Goodman, Tenenbaum, Feldman, & Griffiths, 2008; Tenen-
baum, 1999). In this setting, multiple noisy samples inform the learner’s hypothesis about a
probabilistic concept represented by a set of binary features (Fig. 2). Like our participants,
the model needs to decide at every step whether to keep looking at the current stimulus or
terminate the trial by “looking away.”

The formulation of the learner as taking noisy samples from a stimulus allows us to do
two things. First, we can explicitly model the learner’s decision about when to stop sampling
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by asking the model to decide, after every sample, whether it wants to continue sampling
from the same stimulus or not. This aspect of RANCH contrasts with previous models, which
correlate information-theoretic measures to looking data overall (Kidd et al., 2012; Poli et al.,
2020) but do not provide a mechanism for how these measures could control moment-to-
moment sampling decisions. Second, a consequence of making a decision at every time step
is that we can study the behavior of another information-theoretic measure: the model’s EIG.
EIG is commonly used in rational analyses of information-seeking behavior to assess whether
information-seeking is optimal with respect to the learning task (Markant & Gureckis, 2012;
Oaksford & Chater, 1994).

3.1. Model definition

In our setting, the goal is to learn a concept θ , which is a set of probabilities over indepen-
dent binary features θ1,2,..,n, where n is the number of features. θ in turn generates exemplars
y: instantiations of θ̄ , where each feature y1,2,..,n is present or absent. The weights on each
feature θi are sampled from a Beta prior, and individual exemplars yi are distributed as a bino-
mial with parameter θi, forming a conjugate Beta–Bernoulli distribution. Since the features
are independent, this relationship holds for the entire concept θ .

To model the timecourse of attention, RANCH does not observe exemplars directly.
Instead, it can observe repeated noisy samples z̄ from each exemplar. For any sample z from
an exemplar y, there is a small probability ε that the observation is flipped and the feature
is seen to be present when it was actually absent or vice versa. ε is assumed to be unknown
but to have a Beta prior; in practice, we integrate over all possible values of ε. Therefore,
by making noisy observations z̄, RANCH obtains information about the true identity of the
exemplar y, and by extension, about the concept θ̄ . By Bayes’ rule:

P(θ |z̄) = p(z̄|y)p(y|θ )p(θ )/p(z̄) (1)

To compute approximate posterior probability distributions during inference, we used a
discrete grid approximation with a step size of 0.001 over both θ and ε.

Upon observing a sample, RANCH then decides whether to keep sampling or not. We
chose EIG from the next sample as the main linking hypothesis between the learned posterior
and sampling choice.

RANCH computes EIG by iterating through each possible next observation and weighing
the information gain from each observation by its posterior predictive probability p(z|θ ). We
defined information gain as the KL between the hypothetical posterior after observing a future
sample zt+1 and the current posterior (Baldi & Itti, 2010):

EIG(zt+1) =
∑

zt+1∈[0,1]

p(zt+1|θt ) ∗ DKL(θt+1||p(θt )) (2)

Finally, to get actual sampling behavior from the model, it has to convert EIG into a binary
decision about whether to continue looking at the current sample, or to advance to the next
trial. The model does so via a Luce choice between the EIG from the next sample and a
constant “environmental EIG” that is assumed to be the amount of information to be gained
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via looking away from the stimulus.

p(lookaway) = EIG(env)

EIG(zt+1) + EIG(env)
(3)

The basic structure of the model can be described in the following pseudocode:

3.2. Simulations

To model the behavioral experiment, we first represented the stimuli as binary-valued vec-
tors indicating the presence (1) or absence (0) of each feature. All stimulus vectors were
chosen to be length 6 to provide sufficient representational flexibility. Complex stimuli were
represented as having three 1s and simple stimuli were represented as having one 1, with the
rest of the features set to 0. Individual stimuli were then assembled into sequences to reflect
the stimuli sequences in the behavioral experiment. For a particular sequence, we constructed
the deviant stimulus based on the background stimulus to make sure that they were always
maximally different and had the same number of features present.

Since the model makes stochastic choices about how many samples to take from each stim-
ulus, behavior varies substantially across runs. Thus, we conducted 500 runs for each stimuli
sequence and parameter value to obtain a reasonably precise estimate of the model’s behavior.

3.3. Parameter estimation

We performed an iterative grid search in parameter space. We a priori constrained our
parameter space on the prior beta distribution to have shape parameters αθ > βθ , which
describe the prior beliefs as “more likely to see the absence of a feature than the presence
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Fig. 3. The first row shows behavioral data. All model’ results were adjusted to match behavioral data scale and
intercepts for easier comparisons. All results were log-transformed. Red lines indicate results for complex stimuli,
and blue lines indicate results for simple stimuli.

of a feature.” We then searched for the priors over the concept (θ ), the noise parameter that
decides how likely a feature would be misperceived (ε), and the constant EIG from the envi-
ronment (EIG(env)). The prior over the noise parameter was fixed for all searches (αε = 1;βε

= 10). We selected the parameters that achieved the highest correlation with the behavioral
data averaged across participants and blocks (αθ = 1, βθ = 4, ε = 0.065, EIG(env) = 0.01).
No parameter regimes showed qualitatively different patterns, though the magnitude of disha-
bituation was strongly dependent on the priors over θ ; a test of the generality of these specific
parameter values is left for future work.

3.4. Results

RANCH exhibited the main phenomena of interest, showing habituation, dishabituation,
and complexity effects (Fig. 3, row 2). We also quantitatively explored the model by fitting the
model results to the behavioral data (see Table 1, row 1). Overall, RANCH achieved a good
fit, though it did show a slightly more gradual habituation process than the behavioral data.
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Table 1
Model fits

Model type (linking hypothesis) Pearson’s r RMSE

RANCH (EIG) .92 [0.84, 0.96] 0.19 [0.16, 0.24]
Baseline: No Learning .21 [-0.09, 0.46] 0.27 [0.23, 0.34]
Baseline: No Noise .5 [0.36, 0.65] 0.25 [0.21, 0.31]
RANCH (Surprisal) .92 [0.85, 0.95] 0.13 [0.11, 0.16]
RANCH (KL-divergence) .93 [0.88, 0.96] 0.12 [0.1, 0.15]

Note. This table shows the correlations between the log-transformed model results and the log-transformed
looking time data. The values in square brackets are 95% confidence intervals. RANCH model implemented
with the three different linking hypotheses showed similar performance with slight numerical differences and
outperformed the baseline models.

4. Alternative models

4.1. Baseline models

We next wanted to test what aspects of the model are necessary to produce the phenom-
ena. We focused on two assumptions: (1) the model makes decisions based on learning and
(2) perception is noisy. We implemented lesioned baseline models corresponding to each
assumption.

The first baseline model (No Learning) made random sampling decisions by drawing
p(lookaway) from a uniform distribution between 0 and 1 at every time step. The second
baseline model (No Noise) omitted the noisy sampling aspect of RANCH. We assumed that
learning is free from perceptual noise, that is, learners can observe the exemplars y directly.
To do so, we set ε to 0 and replaced the learner’s beliefs about the true value of ε with the
assumption that perception was noiseless (for numerical stability, we set the value to 0.000001
instead of 0). The baseline models used the parameters obtained from fitting the EIG model
to the behavioral data.

The baseline models fit the data poorly (Table 1, rows 2 and 3; Fig. 3, rows 3 and 4),
suggesting that both learning and noisy perception are critical for modeling the phenomena
of interest.

4.2. Alternative linking hypotheses

We also studied the behavior of RANCH using two other linking hypotheses, surprisal and
KL divergence. Both have been used in previous attempts to model infant looking behavior
(Kidd et al., 2012; Poli et al., 2020) and to approximate EIG in the reinforcement learning
literature (Kim, Sano, De Freitas, Haber, & Yamins, 2020).

We implemented these by replacing EIG(zt+1) in Eq. 2. Surprisal, formally described as
−log(p(z|θ )), intuitively refers to how surprising an observation z is given the model’s beliefs
about θ – the intuition that surprising events should result in longer looking times has served
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as a foundational assumption in developmental psychology (Sim & Xu, 2019). KL, formally
described as

∑
x∈X p(θ = x|z)log p(θ=x|z)

p(θ=x) , measures how much the model changed to accom-
modate the most recent observation z. The intuition behind using KL as a linking hypothesis is
that, if one observation causes a large change, the next one might too, so continuing to sample
is likely to be informative. We refit the free parameters (prior, noise, and the environmental
EIG) for these linking hypotheses to ensure a fair comparison.

In our experiment, the performance of surprisal and KL matched that of EIG (Table 1, rows
4 and 5, Fig. 3, rows 5 and 6). To calculate EIG, the model needs to consider all combinations
of possible features for the next observation and how informative they would be, a compu-
tation that can be intractable in richer environments. The similarity of model fits between
EIG, surprisal, and KL suggests that easier-to-compute metrics could be viable heuristics for
choice behavior, at least in the current learning context.

5. General discussion

The current work aims to provide a computational model that can explain key phenomena
observed in typical infant looking time paradigms: habituation, dishabituation, and how these
are modified by stimulus complexity. RANCH assumes a rational learner that takes noisy
perceptual samples from stimuli and makes sampling decisions based on EIG. We evaluated
the model with adult looking time data collected from a paradigm that mirrors classic infant
looking time paradigms, in which participants are learning about multifeature concepts, and
found that RANCH could successfully reproduce the patterns observed in behavioral data. By
contrasting the model results with our baseline models, we showed that habituation, disha-
bituation, and complexity effects only arise in a learning model that takes into account the
noisy nature of perception. Moreover, we found that, in the current learning context, other
information theoretic quantities (surprisal and KL) are good proxies for the optimal linking
hypothesis, EIG.

RANCH constitutes a significant step forward in the modeling of looking time in that it
models the moment-to-moment decision-making process of whether to keep sampling or
look away. Previous approaches incremented time in steps of whole stimuli and, therefore,
correlated information-theoretic variability in the stimulus sequence to look-away probability
and looking time, rather than producing these behaviors endogenously. Our account of the
sampling process depends on assuming that perception is noisy, which makes it necessary to
take multiple samples from a stimulus until the information content of the stimulus has been
learned sufficiently.

The similarity between model fits among models with different linking hypotheses high-
lights the significance of learning contexts. Our results should not be interpreted as evidence
showing that the three linking hypotheses are indistinguishable across all learning contexts.
Previous work has shown that adopting surprisal as learning policy can lead to undesirable
behaviors in artificial agents (e.g., “the white noise problem,” Oudeyer et al. (2007)). More-
over, the two alternative linking hypotheses are backward-looking metrics that utilize heuris-
tics about the past to make decisions. This characteristic could constrain their application
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to situations in which the environment is stable and the cost of sampling is low. Since adult
exploration is sensitive to environmental complexity, a forward-looking metric like EIG might
be particularly suitable to predict behaviors in a more dynamic learning context (Dubey &
Griffiths, 2020; Vogelstein et al., 2022).

There are several limitations to our work. For our behavioral data, one concern is that adult
looking time might not be driven by intrinsic interest to the same degree as infant looking
time. Rather, they might be driven by task-preparation. However, across the three conditions
with different cover tasks, we found no differences in looking time patterns. In regards to the
model, a few concerns can be raised. First, the current stimulus representation is oversimpli-
fied, using an unweighted collection of binary features. Future research could apply RANCH
to stimulus representations generated from a perceptual model. Second, RANCH assumes
that the EIG from the environment is a constant throughout the experiment, but one can argue
that environmental EIG might increase as the experiment progresses (e.g., the longer you
have not attended to the things in your surroundings, the more they may have changed in the
meantime). While implementing more sophisticated assumptions could potentially explain
additional variance in the data, our current work suggests that even a simple rational learner
that takes noisy samples from a set of independent binary features is capable of explaining
key phenomena.

Our ultimate goal is to provide a rational learner model that can account for information-
seeking behaviors reflected in infants’ looking time. Here, we have shown that a simple model
of learning from sampling can reproduce habituation, dishabituation, and complexity effects.
Moving forward, we aim to capture and explain more contentious phenomena documented in
the infant looking time literature, such as familiarity preferences and age effects (Hunter &
Ames, 1988). Our ongoing work with infants will eventually enable us to evaluate our model
with developmental data. When combined with adult results, the data and model will provide
insights into the general mechanisms through which learners decide what to look at, and when
to stop looking.
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