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Predicting graded dishabituation using perceptual stimulus embeddings in a
rational learning model
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, Rebecca Saxe2 (saxe@mit.edu), and Michael C. Frank1 (mcfrank@stanford.edu),

1Department of Brain and Cognitive Sciences, MIT, 2Department of Psychology, Stanford University

Abstract

How do humans decide what to look at and when to stop
looking? The Rational Action, Noisy Choice for Habituation
(RANCH) model formulates looking behaviors as a rational
information acquisition process. RANCH instantiates a hy-
pothesis about the perceptual encoding process using a neural
network-derived embedding space, which allows it to operate
on raw images. In this paper, we show that the model not
only captures key looking time patterns such as habituation
and dishabituation, but also makes fine-grained, out-of-sample
predictions about magnitudes of dishabituation to previously
unseen stimuli. We validated those predictions experimentally
with a self-paced looking time task in adults (N = 468). We
also show that model fits are robust across parameters, but that
assumptions about the perceptual encoding process, the learn-
ing process and the decision process are all critical for predict-
ing human performance.
Keywords: attention; learning; visual perception; bayesian
models

Introduction
From birth, humans learn actively. Even before they can
move on their own, infants can select information by decid-
ing what to look at and when to stop looking (Haith, 1980;
Raz & Saxe, 2020). Developmental psychologists have long
leveraged this attentional decision-making to make inferences
about the perceptual and cognitive abilities of infants by mea-
suring how long infants look at certain stimuli (Aslin, 2007;
Baillargeon, Spelke, & Wasserman, 1985; Fantz, 1963).

Two key phenomena are particularly critical for these in-
ferences: habituation and dishabituation. Habituation refers
to the decrease in looking time upon seeing the same or sim-
ilar stimuli repeatedly; dishabituation refers to the increase
in looking time following the presentation of a novel stimu-
lus after habituation. In order to dishabituate, the infant must
distinguish between the original stimulus and the novel one.
While habituation and dishabituation have been robustly doc-
umented, the underlying mechanisms of these looking time
changes remain poorly understood. In this paper, we address
this gap by presenting a rational model that provides princi-
pled predictions about the magnitude of dishabituation. Criti-
cally, this model can be applied generally to make predictions
about looking time for arbitrary stimuli by using embeddings
derived from a convolutional neural network.

The dominant model of infant looking time proposes that
habituation and dishabituation are driven by the amount of
information to be encoded in the stimulus (Hunter & Ames,

1988). Observers look longer at a stimulus if the stimulus has
a lot of unencoded information, and as exposure to the stim-
ulus accumulates, less information is left unencoded, leading
to shorter looking time. While this theory has been highly
influential, the lack of formal details about what is meant
by “encoding” opens the door for post-hoc interpretation of
looking time measurements. A stimulus could be argued to be
novel because it has distinct perceptual features, but it could
also be familiar because of its conceptual characteristics (or
perhaps both at the same time). In part as a result of this inter-
pretive ambiguity, concerns have been raised repeatedly about
whether looking time measurements should be the foundation
for central claims in developmental psychology (Blumberg &
Adolph, 2023; Haith, 1998; Paulus, 2022).

Computational models provide an important tool for for-
malizing the details of the habituation and dishabituation pro-
cess. One set of models describes infants’ looking behaviors
with information-theoretic measures derived from ideal ob-
server models (Kidd, Piantadosi, & Aslin, 2012; Francesco
Poli, Ghilardi, Mars, Hinne, & Hunnius, 2023; F. Poli, Serino,
Mars, & Hunnius, 2020). For example, Poli et al. (2023) de-
veloped a model that learned probability distributions from
sequences of events. They then calculated the Kullback–
Leibler (KL) divergence between the model’s parameters be-
fore and after each event in a sequence, capturing how much
the model learned from each observation. This measure was
shown to predict infants’ looking behavior, with higher KL
associated with lower probabilities of infants looking away.

While this type of model provides a quantitative account
of the habituation process, it does not model the infant’s in-
formation sampling process directly. Instead, it describes
trial-level correlations between model-derived, information-
theoretic measures and infant looking times. Essentially, this
type of model fails to elucidate the causal relationship be-
tween information theoretic measurements and infant’s sam-
ling decision. Furthermore, it presupposes an abstracted rep-
resentation of the stimuli as a sequence of schematic events
(e.g., 1, 2, 1, 1, 3, etc.) rather than instantiating a hy-
pothesis about how visual encoding occurs during attentional
decision-making. This feature limits the ability of these mod-
els to make principled predictions about looking time for new
stimuli.

To address these issues, Rational Action, Noisy Choice
for Habituation (RANCH) model was developed (Cao, Raz,
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Saxe, & Frank, 2023; Raz, Cao, Saxe, & Frank, 2023).
RANCH describes an agent’s looking behavior as rational ex-
ploration based on a sequence of noisy perceptual samples.
The model construes the looking time paradigm as a series
of binary decisions: to keep sampling from the current stim-
ulus, or to move on to the next stimulus. The model makes
sampling decisions based on the Expected Information Gain
(EIG) of the perceptual samples, choosing to keep looking or
look away based on which one would in expectation yield the
most information; it therefore can be seen as a rational analy-
sis of looking behavior (Anderson, 1991; Lieder & Griffiths,
2020; Oaksford & Chater, 1994).

RANCH also incorporates recent progress in convolutional
neural networks, which have offered insights into how the vi-
sual system encodes objects (Doshi & Konkle, 2023; Hebart,
Zheng, Pereira, & Baker, 2020; Yamins et al., 2014). The
activations of these brain-inspired neural networks form em-
bedding spaces, each of which can be seen as a quantita-
tive hypothesis about how humans represent visual stimuli
(Schrimpf et al., 2020). For example, Lee (2022) projected
the final layer of a trained ResNet50 into a “perceptually-
aligned” space, by making its representations match dissimi-
larity matrices derived from human adult reaction times in a
2-AFC match-to-sample task. Passing new stimuli through
this perceptual alignment yields a plausible representation
of how humans embed different visual stimuli in a low-
dimensional space. Using this perceptually-aligned embed-
ding space as a model of perceptual encoding allows RANCH
to learn from raw, previously unseen images.

Previously, Cao et al. (2023) and Raz et al. (2023) have
shown that RANCH can successfully model habituation and
dishabituation in adults and infants. In this paper, we test
RANCH’s ability to predict responses in new data, particu-
larly a key phenomenon in qualitative accounts of dishabitu-
ation. To conduct these tests, we first fit RANCH’s parame-
ters to a training dataset from the habituation-dishabituation
experiment in which participants saw sequences of monsters
which were either familiar or novel (dataset reported in Cao
et al., 2023, Fig 1A). Then, we use the best-fitting parame-
ters to generate predictions for a new experiment designed to
measure subtle differences in dishabituation magnitude based
on stimulus similarity (Fig 1C). In this new experiment, we
systematically varied the similarity between habituation and
dishabituation stimuli such that dishabituation stimuli dif-
fered in their pose angle, their number, their identity, or their
animacy. This experiment tests a prediction from Hunter &
Ames (1988) model of habituation and dishabituation: that
observers’ dishabituation magnitude should be related to the
similarity between the habituated stimulus and the novel stim-
ulus. The more dissimilar two stimuli are, the more one
should dishabituate to the novel stimulus.

To preview our results, we show that RANCH can pre-
dict looking time responses in new data by transferring model
parameters fit from previous data, with marginal differences
in performance compared to completely refitting to the new

data. RANCH also captures the particular ordering of the
dishabituation magnitude as a function of stimulus dissim-
ilarity, thereby predicting a novel qualitative phenomenon
(graded dishabituation) without ever being trained on it. Fi-
nally, we show that RANCH is relatively robust across param-
eter settings, but the assumptions about its perceptual repre-
sentation, learning process, and the decision process are all
critical to its performance.

Model
Model Components

We modeled looking behaviors in our task as rational infor-
mation acquisition, using a rational analysis approach previ-
ously described for different information-seeking behaviors
(Dubey & Griffiths, 2020; Oaksford & Chater, 1994). Our
goal was to develop a model which formalizes the entire pro-
cess underlying looking time: from perception of a stimu-
lus to deciding how long to look at it. To do so, our model
has three separate components describing (1) how stimuli are
embedded in a low-dimensional perceptual space (2) how
RANCH learns a concept over this perceptual space and (3)
how RANCH makes decisions about how long to sample
from a stimulus based on its expected information gain. Here,
we describe these three components in turn.

Perceptual representation To allow RANCH to operate on
raw images, we used the perceptually-aligned embeddings
obtained from a model presented recently by Lee (2022). We
use these projections into a perceptually-aligned embedding
space as a principled low-dimensional representation of stim-
uli, over which our learning model can form perceptual con-
cepts. We used the first three principal components of the
embedding space due to limits on the computing power; in-
creasing dimension would lead to exponential increase in the
total run time. The first three components captured 57.9% of
the variance. A visualization of experimental stimuli in the
embedding space can be seen in Figure 1B.

Learning model RANCH’s goal is to learn a concept in the
perceptual embedding space described above, through noisy
perceptual samples from a stimulus. The concept is parame-
terized by a single 3D Gaussian (µ,σ), which represents be-
liefs about the location and variance of the concept in the em-
bedding space. This concept describes the distribution of all
viewed stimuli in this experiment. This concept (µ,σ) gen-
erates exemplars (y) of the concept. Each exemplar corre-
sponds to one stimulus observed. RANCH observes repeated
noisy samples (z̄) from each exemplar. For any sample (z)
from an exemplar (y), the model expects the observation to
get corrupted by zero-mean gaussian noise with standard de-
viation (ε). A plate diagram is shown in Figure 1B. We used
a normal-inverse-gamma prior on the concept, the conjugate
prior for a normal with unknown mean and variance, on the
concept parameterized as µp,νp,αp, βp. Still, applying per-
ceptual noise to y breaks the conjugate relation, so we com-
puted approximate posteriors using grid approximation over
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Figure 1: Workflow of the current study. (A) The experimental design and stimuli used in the training dataset. (B) The core
components of RANCH, with the top showing the stimuli embedding in PC-space. The bottom is the plate diagram of the
learning model. (C) The experimental design of the test data. RANCH model is first fit using the training data in A, and we test
its prediction on the test data collected in the experiment illustrated in C.

(µ,σ) and (ε). This computationally expensive approxima-
tion was accomplished through a PyTorch implementation
and distributed GPU computation.

Decision model To decide whether to take an additional
sample from the same stimulus, RANCH computes Expected
Information Gain (EIG) of the next sample. EIG is computed
as the product of the posterior predictive probability of the
next sample and the information gained conditioned on that
next sample, by iterating through a grid of possible subse-
quent samples. RANCH then makes a softmax choice (with
temperature = 1) between taking another sample and looking
away. We assumed that participants expect a constant infor-
mation gain from looking away (the “world EIG”). Therefore,
as EIG from the stimulus drops below world EIG, it becomes
increasingly likely that RANCH will look away.

Alternative models

To test the importance of each of RANCH’s components for
its performance, we defined three lesioned models, in which
one key feature of the model was removed in each model.
First, to test the importance of the perceptual embeddings, we
ran a version of RANCH in which the mappings from stim-
ulus labels to embeddings were permuted, such that the as-
sociations between embeddings and violation type were ran-
domized (“Random embeddings”). Second, we ran a version
in which RANCH assumes that each perceptual sample in the
learning process is noiseless, rather than corrupted by ε (“No
noise”).Third, we ran a version in which RANCH made deci-
sions randomly rather than based on the learning model (“No

learning”).

Training Procedure

We used the behavioral dataset reported in Cao et al. (2023)
as the training data. In this prior experiment, 449 adults par-
ticipated in an online self-paced looking time paradigm (Fig.
1A). In this paradigm, participants watched blocks of six ani-
mated monsters. Each block consisted of one repeating mon-
ster (the background), and one monster different from the re-
peated one (the deviant). The deviant, if shown, was on ei-
ther the 2nd, 4th, or 6th trial of the block. Adults can proceed
to the next trial whenever they press a key on the keyboard,
and the interval between the onset of the stimuli and the key
press was used as the proxy for looking time. To train on
this dataset, we first converted the raw stimuli into perceptual
embeddings, and combined them into the same sequences the
participants saw. Since the model makes stochastic sampling
decisions, we conducted 400 runs for each stimulus sequence
for each parameter setting. To avoid numerical instabilities
due to the granularity of our grid approximation, for each run
we slightly jittered all parameter grid values by a constant
offset. We conducted an iterative grid search across the priors
over µ, ν and ε, along with the actual noise ε. We selected
the parameters that yielded the highest R2 between the model
output and the behavioral data as the best fitting parameters.
The best fitting parameters were: µp = 0,νp = 1, αp = 1, βp =
1, ε = 0.0001.
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Behavioral Experiment
Next, we introduce the novel experiment used to test the gen-
eralizability of the parameter setting found above. The pro-
cedure was similar to the previous training data with two key
differences: First, stimuli used in the training data were an-
imated monsters, whereas the current experiment (test data)
used images of animals and vegetables with added shaking
animations. Second, unlike the training data, the current ex-
periment varied the dissimilarity between the repeating stim-
uli and the deviant stimuli by introducing four different types
of deviant stimuli.

Methods
Stimuli All stimuli were created using images selected
from Unity assets “Quirky Series - Animals” and “3D Prop
Vegetables and Fruits”. We added the same minor shaking
animation to each image to increase interest. For each image
from the animal set, we created a mirrored version to create
an image with a different pose. The long axis of each veg-
etable image was tilted before mirroring.

Procedure The experiment was a self-paced web-based
looking time experiment (Fig. 1C). Participants saw 24
blocks that consisted of either two, four, or six trials. On
each trial, a schematic screen would rise up to reveal a stimu-
lus behind it. Participants pressed the spacebar to go on to the
next trial after a minimum viewing time of 500 ms, triggering
the schematic screen to drop and raise again to reveal the next
stimulus.

Each participant saw eight types of repeating stimuli. The
eight types of stimuli included all combinations of the three
features that each included two levels: animacy (e.g. animals
or vegetables), number (singleton or pair), and pose (facing
left or right).

Eight blocks consisted of one stimulus being repeatedly
presented throughout the block (background blocks). The re-
maining sixteen blocks included two stimuli, including one
that was repeatedly presented and one that deviated from the
repeating trial. Stimuli for each block were randomly sam-
pled from the stimulus pool without replacement. The de-
viant trial was always different from the repeating stimulus in
one of the four dimensions: animacy, identity, number, and
pose. The deviant trial always appeared in the last trial of
the block. In the first three violation types, the feature would
be switched to the previously unseen level (e.g. an inanimate
deviant after an animate repeating stimulus, keeping the num-
ber and the pose the same). For identity violations, the par-
ticipants would see a different, but within-category, exem-
plar from the repeating stimulus category. Among the sixteen
blocks, the four violation types each appeared four times. Af-
ter each block, participants performed a filler task in which
they judged whether they had seen an animation before. Half
of the filler task showed previously unseen animation, and the
other half showed an animation from the preceding block.

To control the distribution of background blocks and de-
viant blocks, we grouped the 24 blocks into four groups. Each

group consisted of two background blocks, and one deviant
block from each violation type. The order of blocks within
each group was randomized.

Participants We recruited 550 adult participants on Pro-
lific. Participants were excluded if either (1) the standard
deviation of log-transformed of their reaction times on all tri-
als was less than 0.15 (indicating key-smashing, e.g. Moon,
2021); (2) they spent more than three absolute deviations
above the median of the task completion time as reported by
Prolific, or (3) they provided the incorrect response to more
than 20% of the memory task. In total, 15 % of the partici-
pants were excluded by these criteria. After the participant-
level exclusion, we also applied trial-level exclusion. A trial
was excluded from final analysis if it was three absolute de-
viations away from the median in the log-transformed space
across all participants. The final sample included 468 partic-
ipants.

Results and discussion
The sample size and analysis plan were all pre-registered and
can be found here. All analysis scripts are publicly available
and can be found here.

We were primarily interested in (1) whether our experi-
mental paradigm captured habituation and dishabituation and
(2) whether the magnitude of dishabituation was influenced
by the type of violation. We tested these two hypotheses in a
linear mixed-effect model with maximal random effect struc-
ture that predicted log-transformed looking time with the fol-
lowing specification on the fixed effects: log(total rt) ∼
trial number + is first trial + (trial number +
is first trial) * stimulus number + (trial number
+ is first trial) * stimulus pose +(trial number
+ is first trial) * stimulus animacy +
(trial number + is first trial) * violation type
+ log(block number). The violation type has five
levels, including the background trial and four types of
violation. 1

To examine the specific contrast between different viola-
tions, we set different reference levels for violation type.
We found evidence for habituation and graded dishabituation
using this technique (Fig. 2).When the background trial was
treated as the reference level, there was a significant effect of
trial number, suggesting participants were habituating to the
stimuli (β = -0.02, SE = 0, p < .001). Moreover, looking time
to animacy violations was significantly longer than to number
violations (β = 0.17, SE = 0.04, p < .001) and pose violations
(β = 0.18, SE = 0.04, p < .001), and so were identity viola-
tions (cf. number: β = 0.18, SE = 0.04, p < .001; cf. pose:
β = 0.19, SE = 0.04, p < .001). But animacy violation was
not different from the identity violation, nor was the number
violation different from the pose violation (all p > 0.1)

Following the pre-registration, we explored the relation-

1In our preregistered model, we specified an interaction between
trial number and is first trial that was automatically removed in the
final model.
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Figure 2: RANCH and alternative models. For the human panel, X-axis shows the trial number, y-axis shows the looking time
at each trial to the test stimuli in milliseconds. The line shows the fit from the preregistered linear mixed effect model. For the
remaining panels, Y-axis represents the samples model made on each trial, scaled linearly to the behavioral data. The scaling
procedure was applied to each model individually. Different colors represent different trial types.

ship between the embedding distance between background
and deviant stimuli and the dishabituation magnitude. We fit
a linear regression model predicting the residuals of the pre-
vious model on the deviant trials with an interaction term of
the embedding distance and the violation type. None of the
terms were significant (all p > 0.05).

We also pre-registered a qualitative prediction on the order-
ing of the dishabituation magnitude (i.e. animacy > number
> identity > pose). We predicted this order based on the
degree of intuitive dissimilarity of these four different viola-
tions. However, we did not find evidence consistent with this
prediction. The qualitative ordering in our data was animacy
(M = 2694.74), identity (M = 2489.2), pose (M = 2201.44)
and number (M = 2117.63).

In conclusion, our experiment successfully captured habit-
uation and dishabituation. We observed that participants ex-
hibited varying levels of dishabituation in response to differ-
ent deviating stimuli. Notably, they did not show sensitiv-
ity to violations within or across categories; their responses
to within-category stimuli (identity violations) were similar
to their responses to out-of-category stimuli (animacy viola-
tions). Intriguingly, and contrary to our initial hypotheses, the
concept of number did not serve as a strong perceptual cue to
trigger a robust dishabituation response. The degree of disha-
bituation to number was on par with that to pose changes,
which were the most subtle form of violation.

Model Evaluation
We evaluate RANCH in three ways. First, we evaluate
whether RANCH can make parameter-free predictions on the
new data that it has not been trained on. Second, we inves-
tigate to what extent RANCH’s performance is robust across
parameter settings. Finally, we examined to what extent each
component of RANCH is critical to predicting human behav-
iors.

Parameter generalizability
The procedure to model the current experiment is very simi-
lar to the training procedure. We first converted the raw im-
ages into the perceptual representations. Then, we assembled
the stimuli into the sequences that participants saw in each
block. For the blocks with deviating stimuli, we sampled de-
viant stimuli from the corresponding violation categories. We
sampled 23 stimulus pairs for each combination of violation
type and deviant position.

However, instead of searching for a new set of best-fitting
parameters, we used the best parameters found in the training
dataset, and tested their generalizability to the new task. The
best fitting parameters (µp = 0,νp = 1, αp = 1, βp = 1, ε =
0.0001) predicted the habituation and dishabituation in the
training data (R2 = 0.95 [0.90, 0.98]). Using these previously
obtained parameters, we now test RANCH’s performance on
the current experiment with different stimuli and design. We
found that the parameters generalized to the current context
well (R2: 0.75 [0.68, 0.96], RMSE: 148.46 [112.18, 219.54]).
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Moreover, RANCH also showed a qualitative ordering of the
graded dishabituation similar to the behavioral data: animacy
> identity > number > pose.

Parameter robustness
To evaluate RANCH’s robustness to different parameters, we
then conducted a grid search over the parameters, fitting the
model to data from our new experiment. We selected the
best fitting parameters (µp = 0,νp = 2, αp = 10, βp = 1, ε

= 0.0001) using a 10-fold cross-validation on the behavioral
dataset. When fit to the full dataset, the best fitting parameter
from this search was comparable with the parameters gener-
alized from the training dataset (R2: 0.77 [0.71, 0.95], RMSE:
142.69 [107.82, 211.02]). Moreover, performance across the
162 parameter settings was relatively stable, yielding a mod-
erate range of R2 (M = 0.62; SD = 0.1) and RMSE (M =
181.75; SD = 23.28). Finally, the qualitative ordering of the
dishabituation magnitude was also preserved when averaged
across all parameter settings.

Comparison with alternative models
To examine whether the three components — the perceptual
representation, the learning model, and the decision model –
in our models were critical to the success, we ran three alter-
native models: Random Embedding model, No Noise model,
and No Learning Model. We ran a parameter search for each
of the model, and all of the models showed worse perfor-
mance compared to RANCH (Random Embedding: R2: 0.57
[0.08, 0.89], RMSE: 195.06 [147.39, 288.47]; No Noise: R2:
0.45 [0.34, 0.85], RMSE: 221.46 [167.34, 327.5]; No Learn-
ing: R2: 0.28 [0.19, 0.76], RMSE: 253.46 [191.52, 374.83]).

General Discussion
In this paper, we report a novel experiment in which par-
ticipants were familiarized to sequences of animations, and
we measured habituation and their dishabituation to differ-
ent types of deviations from familiar stimuli. We found that
adults’ dishabituation is graded by the type of violation they
see, and that the magnitude of dishabituation is predicted by
a rational model which takes noisy samples from perceptual
embeddings of the same stimuli. RANCH, through its use
of perceptual embeddings, operates directly on raw images
and therefore can generate predictions for previously unseen
stimuli or even tasks. Making use of this property, RANCH
successfully predicted human behaviors in our graded disha-
bituation task while using parameters fit to behaviors on a
different task.

Lesioning RANCH by removing key components caused
its fit to the data to drop substantially relative to the full model
(∆R2 of 0.2 - 0.49) and eliminated any sense of qualitative cor-
respondence to the human data. This result suggests that the
aspects that we lesioned - a psychologically-plausible embed-
ding space, noisy perception, connecting sampling to concept
learning - are all essential for explaining behaviors in our task.

There are several directions in which RANCH could be ex-
tended in future work. First, in the current paper, we imple-

mented a specific version of RANCH, with a specific form
for each of its components: the perceptual representation, the
learning model, and the linking hypothesis between learning
and attentional sampling. However, RANCH’s modular and
interpretable structure allows researchers to adjust its compo-
nents according to the population or task for which predic-
tions are being generated. For example, the perceptual em-
bedding space used in this paper was aligned to adult behavior
(Lee, 2022), but infants likely represent visual objects differ-
ently from adults. Using perceptual representations based on
visual input experienced by infants may provide a better fit to
infant data (Orhan & Lake, 2023; Zhuang et al., 2021). Sim-
ilarly, task settings in which there was hierarchical structure
to the stimulus sequences would call for more complicated
learning models. RANCH could be extended to accommo-
date learning from multiple concepts. The linking hypoth-
esis can also vary. For example, the rational, but compu-
tationally expensive, EIG could be replaced with easier-to-
compute information-theoretic quantities such as surprisal or
KL-divergence (Cao et al., 2023; Raz et al., 2023). While
previous work has found that these linking hypotheses make
similar predictions, it is possible that they may dissociate un-
der different task settings or different assumptions about the
perceptual representations. In summary, RANCH’s modular-
ity offers a rich space of hypotheses about possible computa-
tions underlying looking behavior.

Second, while inspired by infant looking time research, our
current work only has adult participants. Beyond encoding
stimuli differently from infants, adults may conceptualize our
task differently from infants, and experience different task de-
mands. In particular, infants are quite sensitive to changes in
the number of objects that are displayed (Feigenson & Carey,
2003; Wynn, 1992), but in the current study, adults disha-
bituated to number violations as little as to pose violations,
the subtlest violation in our task. This suggests that adults
may not have engaged number cognition in this task, as in-
fants likely would. Furthermore, given the interpretability of
the model parameters we fit to the behaviors, conducting the
same experiment with infants may lead to interpretable devel-
opmental differences in the model parameters, such as priors
on perceptual noise and prior uncertainty about the mean and
standard deviation of perceptual concepts.

Overall, our work presents a rational model, RANCH,
which describes how humans decide how long to look at
stimuli. Using a psychologically motivated visual encoding
model allows RANCH to operate on raw images, and gener-
ate predictions for previously unseen stimuli or tasks. We
think that the generality and interpretability of our model
framework constitutes a significant step towards predictive
modeling of adult, and eventually infant, looking time,
thereby putting the field on firmer ground.
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